General questions on Mechanics

1- physics

Identify the letter of the choice that best completes the statement or answers the question.

1. Which of the following is an area of physics that studies motion and its causes? quantum mechanics c. thermodynamics a. d. mechanics optics b. 2. Which of the following is an area of physics that studies heat and temperature? quantum mechanics c. thermodynamics d. mechanics optics b. 3. Listening to your favorite radio station involves which area of physics? vibrations and wave phenomena c. optics а d. thermodynamics relativity b. 4. A baker makes a loaf of bread. Identify the area of physics that this involves. mechanics c. optics a. d. thermodynamics relativity b. 5. A hiker uses a compass to navigate through the woods. Identify the area of physics that this involves. electromagnetism c. thermodynamics a. quantum mechanics d. relativity b. 6. According to the scientific method, why does a physicist make observations and collect data? to decide which parts of a problem are important a. to ask a question b. to make a conclusion c. to solve all problems d. 7. According to the scientific method, how does a physicist formulate and objectively test hypotheses? by experiments c. by defending an opinion a. by stating conclusions d. by interpreting graphs b. 8. In the steps of the scientific method, what is the next step after formulating and objectively testing hypotheses? interpreting results a. stating conclusions b. conducting experiments c. making observations and collecting data d. 9. According to the scientific method, how should conclusions be stated? so that no one can refute the conclusion a. so that it works with only one set of data b. so that it is completely correct, with no mistakes c. in a form that can be evaluated by others d. 10. Diagrams are NOT designed to measure an event or situation. c. show relationships between concepts. a. label parts of a model. d. show setups of experiments. b. 11. Why do physicists use models? to explain the complex features of simple phenomena a. to describe all aspects of a phenomenon b. to explain the basic features of complex phenomena c. to describe all of reality d 12. Which statement about models is NOT correct? Models describe only part of reality. a. Models help build hypotheses. b. Models help guide experimental design. c. Models manipulate a single variable or factor in an experiment. d.

	13. What two dimensions, in a	dditi	ion to mass, are commonly used by physicis	sts to derive additional
	measurements?			
length and t	ime	c.	length and width	a.
velocity and	l time	d.	area and mass	b.
	14. The symbol mm represents	s a		
megameter.		c.	micrometer.	a.
manometer.		d.	millimeter.	b.
	15. The symbols for units of le	ength	n in order from smallest to largest are	
km, mm, cn	n, and m.	c.	m, cm, mm, and km.	a.
mm, cm, m,	, and km.	d.	mm, m, cm, and km.	b.
	16. The SI base unit used to m	easu	re mass is the	
kilogram.		c.	meter.	a.
liter.		d.	second.	b.
	17. The SI base unit for time is	5		
1 minute.		c.	1 day.	a.
1 second.		d.	1 hour.	b.
	18. The most appropriate SI un	nit fo	or measuring the length of an automobile is	the
meter.		c.	centimeter.	a.
millimeter.		d.	kilometer.	b.
	19. If some measurements agree measurements are	ee cl	osely with each other but differ widely from	n the actual value, these
neither prec	ise nor accurate.			a.
accurate but	t not precise.			b.
acceptable a	as a new standard of accuracy.			с.
precise but	not accurate.			d.
-	20. Poor precision in scientific	me	asurements may arise from	
significant f	ligures.		2	a.
human error	r.			b.
scientific no	otation.			с.
both signific	cant figures and scientific notat	ion.		d.
	21. These values were obtained is 10.68 g. The values are	d as	the mass of a bar of metal: 8.83 g; 8.84 g; 8	8.82 g. The known mass
both accurat	te and precise.	c.	accurate.	a.
neither accu	irate nor precise.	d.	precise.	b.
	22 Five darts strike near the c	ente	r of a target. The dart thrower is	
both accurat	te and precise	c	accurate	а
neither accu	rate nor precise.	d.	precise.	b.
	23 In a game of horseshoes of	ne h	orseshoe lands on the post. Four horseshoes	land nowhere near the
	post The one horseshoe on the		t was thrown	s fand nowhere near the
both accurat	tely and precisely	c pos	accurately	a
neither accu	rately nor precisely	d.	nrecisely	h
neither deed	24 Calculate the following or	u. dav	precisery.	the correct number of
	significant figures: $21.4 + 15 +$	· 17.	17 + 4.003	the correct number of
57.6		с.	57.573	a.
58		d.	57.57	D.
	25. Calculate the following, an	nd ex	spress the answer in scientific notation with	the correct number of
	significant figures: $10.5 \times 8.8 >$	< 3.1	.4	
290.1		c.	2.9×10^{2}	a.
290		d.	290.136	b.
	26. Calculate the following, an	nd ex	press the answer in scientific notation with	the correct number of
	significant figures: $(0.82 + 0.04)$	42)	$\times (4.4 \times 10^3)$	
3.784×10^{3}		c.	3.8×10^{3}	a.
3784		d.	3.78×10^{3}	b.
<u>Temperatur</u> 30.0	<u>re (°C)</u> <u>Hour</u> 1:00			

29.0	2:00
28.0	3:00
27.5	4:00
27.0	5:00
25.0	6:00

27. A weather balloon records the temperature every hour. From the table above, the temperature c. increases. remains constant. a. decreases and then increases. d. decreases. b.

28. The time required to make a trip of 100.0 km is measured at various speeds. From the graph above, what speed will allow the trip to be made in 2 hours?

b.

	30. Which of the following equat	atic	ons best describes the graph above?	
$y = -x^2 + 1$	c.	c.	$y = x^2 + 1$	a.
$y = -x^2 - 1$	d	d.	$y = x^2 - 1$	b.
	31. The Greek letter <i>delta</i> , Δ , ind	ıdic	eates a(n)	
direct propo	ortion. c.	c.	difference or change.	a.
inverse pro	portion. d	d.	sum or total.	b.
	32. The Greek letter sigma, Σ , in	ndi	cates a(n)	
direct prope	ortion.	с.	difference or change.	а.
inverse prop	portion d	d.	sum or total.	b.
	33. What is the symbol for a time	ne i	nterval?	
 T	C.	c.	t	a.
Δt	d	d.	t	b.
	34. What is the symbol for mass	s?		
M	C.	c.	m	a.
Δm	d	d.	m	b.
	35. What are the basic SI units?	?		
meters, kilo	ograms, seconds c.	c.	meters, kilograms, hours	a.
feet, kilogra	ams, seconds d	d.	feet, pounds, seconds	b.
	36. Which expression has the sar	ame	e dimensions as an expression yielding a va	lue for acceleration
	$(m/s^2)?$ (Δv has units of m/s.)			
$\Delta v^2 / \Delta t$	С	c.	$\Delta v / \Delta t^2$	a.
$\Delta v^2 / \Delta x$	d	d.	$\Delta v / \Delta x^2$	b.
	37. Which expression has the sar	ame	e dimensions as an expression yielding a va	lue for time? (v has units
	of m/s.)			× ×
$\Delta t / \Delta x$	С	c.	$\Delta x / v$	a.
$1/v^2 \bullet \Delta t$	d	d.	$\Delta x / v^2$	b.
	38. Which of the following expre	res	sions gives units of kg• m^2/s^2 ?	
$m \bullet \Delta x^2 / \Delta t$		c.	$m^2 \bullet \Delta x / \Delta t^2$	a.
$\Delta t^2 / m \bullet \Delta x^2$	d	d.	$m \bullet \Delta x^2 / \Delta t^2$	b.
	39 If the change in position Δx i	is	related to velocity v (with units of m/s) in the	he equation $\Delta x = A y$ the
	constant A has which dimension?	1?		
S	C.	c.	m/s^2	a.
m^2	d	d.	m	b.
	40. If <i>a</i> is acceleration (m/s ²), Δv time interval (s), which equation	ov is n is	s change in velocity (m/s), Δx is change in p NOT dimensionally correct?	position (m), and Δt is the

$\Delta v = a/\Delta t$	c.	•	$\Delta t = \Delta x' v$	a.
$\Delta t^2 = 2\Delta x / a$	d.	•	$a = v^2 / \Delta x$	b.
	41. Which of the following equat	tio	ns gives units of s^2 ? (Δv has units of m/s)	
$\Delta x^2 / \Delta v^2$	c.		$\Delta v^2 / \Delta x^2$	a.
$m \bullet \Delta t^2 / m \bullet \Delta t$	$v \bullet \Delta t^2$ d.	•	$m \bullet \Delta v \bullet \Delta t^2 / m$	b.
	42. Estimate the order of magnitu	ude	e of the length of a football field.	
$10^4 { m m}$	c.		10^{-1} m	a.
$10^{6} \mathrm{m}$	d.		$10^2 \mathrm{m}$	b.
	43. Estimate the order of magnitu	ude	e of your age, measured in units of months.	
10^2 months	c.		10^{-1} months	a.
10 ³ months	d.		10 ¹ month	b.
	44. The sun is composed mostly	of	hydrogen. The mass of the sun is 2.0×10^{30}	kg, and the mass of a
	hydrogen atom is 1.67×10^{-27} kg.	. E	stimate the number of atoms in the sun.	
10^{30}	с.		10^{3}	a.
10^{75}	d.		10 ⁵⁷	b.

1- physics Answer Section

1.	ANS:	В
2.	ANS:	А
3.	ANS:	С
4.	ANS:	В
5.	ANS:	С
6.	ANS:	В
7.	ANS:	С
8.	ANS:	А
9.	ANS:	D
10.	ANS:	С
11.	ANS:	С
12.	ANS:	D
13.	ANS:	С
14.	ANS:	В
15.	ANS:	D
16.	ANS:	С
17.	ANS:	D
18.	ANS:	С
19.	ANS:	D
20.	ANS:	В
21.	ANS:	В
22.	ANS:	С
23.	ANS:	А
24.	ANS:	D
25.	ANS:	А
26.	ANS:	А
27.	ANS:	В
28.	ANS:	С
29.	ANS:	D
30.	ANS:	В
31.	ANS:	А
32.	ANS:	В
33.	ANS:	D
34.	ANS:	В
35.	ANS:	С
36.	ANS:	D
37.	ANS:	А
38.	ANS:	В
39.	ANS:	С
40.	ANS:	С
41.	ANS:	С
42.	ANS:	В
43.	ANS:	С
44.	ANS:	В

2- Motion in one dimension

Identify the letter of the choice that best completes the statement or answers the question.

9.8 m/s		c.	0.0 m/s	a.
9.81 m/s		d.	1.0 m/s	b.
	2. Which of the following is	s the	expression for average velocity?	
$v_{avg} = \Delta x \bullet \Delta t$	t	c.	$v_{avg} = \frac{\Delta x}{\Delta t}$	a.
$v_{avg} = \frac{v_i + 1}{2}$	$\frac{v_f}{d}$	d.	$v_{avg} = \frac{\Delta t}{\Delta x}$	b.
	3. In addition to displacement of the average velocity of an explored of the second se	nt, w objec	hich of the following must be used for a m t?	ore complete description
Δt		c.	m	a.
Δx		d.	kg	b.
	4. A dolphin swims 1.85 km	ı/h. H	Iow far has the dolphin traveled after 0.60	h?
0.63 km	-	c.	1.1 km	a.
3.7 km		d.	2.5 km	b.
	5. A hiker travels south alor travels south for 2.5 h with ar total trip?	ng a s n avei	traight path for 1.5 h with an average veloc rage velocity of 0.90 km/h. What is the hik	city of 0.75 km/h, then er's displacement for the
3.4 km to th	ne south	c.	1.1 km to the south	a.
6.7 km to th	ne south	d.	2.2 km to the south	b.
	6. Acceleration is			
velocity.		c.	displacement.	a.
the rate of c	change of velocity.	d.	the rate of change of displacement.	b.
	7. Which of the following is	s the	expression for acceleration?	
$a = \Delta t \bullet \Delta v$		c.	$a = \frac{\Delta t}{\Delta v}$	a.
$a = \frac{v_i - v_f}{t_i - t_f}$		d.	$\alpha = \frac{\Delta v}{\Delta t}$	b.

8. When velocity is positive and acceleration is negative, what happens to the object's motion?Nothing happens to the object.c. The object slows down.a.The object remains at rest.d. The object speeds up.b.

What does the graph above illustrate about acceleration?

The acceleration is constant.	a.
The acceleration is zero.	b.
The acceleration decreases.	c.
There is not enough information to answer.	d.

	7.0		
	6.0		
	50		
	2.0	B	
	1.0		
	0 2.0 4.0 6.0	8.0 10.0	
	10. Elapsed time	5 (5)	
The acceler	What does the graph above illu	istrate about acceleration?	а
The acceler	ration is zero.		b.
The acceler	ation is constant.	anatant	C.
The acceler	11. A toy car is given an initia	l velocity of 5.0 m/s and experiences a const	a. ant acceleration of 2.0 m/s ² .
	What is the final velocity after	6.0 s?	
16 m/s		c. 10.0 m/s	a. b
17 111/8	12 A shopping cart given an i	u. 12 livs nitial velocity of 2.0 m/s undergoes a consta	0.
	What is the magnitude of the c	art's displacement after the first 4.0 s of its n	notion?
32 m		c. 10.0 m	a. b
80.0 III	13. A race car accelerates from	a. 55 m a 0 m/s to 30.0 m/s with a displacement of 4	5.0 m. What is the vehicle's
	acceleration?		
10.0 m/s^2 15.0 m/s ²		c. 2.00 m/s^2	a. b
15.0 11/5	14. A marble accelerates from	rest at a constant rate and travels for a total	displacement of 44 m in
	20.0 s. What is the average vel	ocity of the marble?	
4.4 m/s		c. 1.1 m/s	a. b
0.0 11/5	15. A soccer ball is kicked hor	izontally. What is its average speed if its dis	placement is 21.0 m after
	4.00 s?	,	r
14.4 m/s 2 63 m/s		c. 5.25 m/s	a. b
2.05 11/3	16. A curious kitten pushes a b	ball of yarn at rest with its nose, displacing the	ne ball of yarn 17.5 cm in
	2.00 s. What is the acceleration	n of the ball of yarn?	5
14.4 cm/s^2 4 38 cm/s ²		c. 11.0 cm/s^2 d. 8.75 cm/s^2	a. b
	17. A sports car accelerates at	a constant rate from rest to a speed of 27.8 r	n/s in 8.00 s. What is the
	displacement of the sports car	in this time interval?	
111 m 222 m		c. 55.0 m d 77.0 m	a. b
	18. Which of the following un	its are used to measure free fall?	0.
m•s	C C	c. m/s	a.
m^2/s^2	10 Which of the fallering is	d. m/s^2	b.
$\overline{9.80} \text{ m/s}^2$	19. which of the following is	c. 9.81 m/s ²	a.
-9.80 m/s^2		d. -9.81 m/s^2	b.

20. Acceleration due to gravity is also called

free-fall acceleration.		c.	negative velocity.	a. h
Instantaneo	21 The basehall astahan through	u.	displacement.	U.
	the mitt. At what point in the b	's a all's	s path does it experience zero velocity and n	onzero acceleration at
midwayon	the same time?			0
at the top o	f its trajectory			a. h
the instant i	it leaves the catcher's hand			с.
the instant	before it arrives in the catcher's	mit	t	d.
	22 A rock is thrown straight u	nwa	and with an initial velocity of 24.5 m/s where	e the downward
	acceleration due to gravity is 9	.81	m/s^2 . What is the rock's displacement after 1	.00 s?
24.5 m		с.	9.81 m	a.
29.4 m		d.	19.6 m	b.
	23. A rock is thrown straight u acceleration due to gravity is 9 and its raturn to the original law	pwa .81	ard with an initial velocity of 19.6 m/s where m/s^2 . What time interval elapses between the proint?	e the downward e rock's being thrown
8 00 s	and its return to the original lat		4.00 s	9
10.00 s		d.	5.00 s	a. b
	24. A baseball is released at re falling for 6.00 s. What was the (Disregard air resistance. $g = 9$	st fr e he .81	From the top of the Washington Monument. If ight from which the ball was dropped? m/s^2 .)	t hits the ground after
115 m		c.	150.0 m	a.
210.0 m		d.	177 m	b.
	25. A coin released at rest from of the coin as it hits the ground	n th ? (I	e top of a tower hits the ground after falling Disregard air resistance. $g = 9.81 \text{ m/s}^2$.)	1.5 s. What is the speed
31 m/s		c.	15 m/s	a.
39 m/s		d.	21 m/s	b.
	26. A rock is thrown from the after 2.0 s, what is the height o	top f the	of a cliff with an initial speed of 12 m/s. If the cliff? (Disregard air resistance. $g = 9.81$ m	he rock hits the ground $/s^2$.)
44 m		с.	22 m	a.
63 m		d.	24 m	b.
	27. A tourist accidentally drop is disregarded, what is the spee	s a d ed of	camera from a 40.0 m high bridge. If $g = 9.8$ f the camera as it hits the water?	1 m/s ² and air resistance
56.0 m/s		с.	28.0 m/s	a.
/84 m/s		d.	31.0 m/s	D.
	28. Human reaction time is use and thumb and releases it with (Disregard air resistance. $g = 9$	ually out v .81	y about 0.20 s. If your lab partner holds a rul warning, how far can you expect the ruler to m/s^2 .)	fall before you catch it?
at least 16.0) cm	c.	at least 4.0 cm	a.
at least 19.0	5 cm	d.	at least 9.8 cm	b.
	29. When there is no air resista	ance	e, objects of different masses	
fall with eq	ual accelerations with similar di	spla	acements.	a.
fall with di	terent accelerations with differe	ent c	lisplacements.	b.
fall with eq	ual accelerations with different	disp	placements.	С.
Tall with di	accelerations with simila		spracements.	d.
	30. Objects that are failing tow	ard	Earth move	
at a constar	fostor	с. d	laster and laster.	a. b
slower then	21 Which mould hit the group	u.	slower and slower.	U.
	bolt?	a 11	rst if dropped from the same height in a vacu	lum, a feather of a metal
the feather	alt			a. b
They would	Ull this the ground at the same time			U. C
They would	the suspended in a vacuum			d.
rney would	22 Which would fall with another	ator	acceleration in a vacuum a last or a store?	ч.
the leaf	52. which would fall with grea	ater	acceleration in a vacuum, a leaf of a stone?	а.
the stone				b.

They would accelerate at the same rate. It is difficult to determine without more information.

2- Motion in one dimension Answer Section

1.	ANS:	А	DIF:	Ι	OBJ:	2-1.1
2.	ANS:	А	DIF:	Ι	OBJ:	2-1.1
3.	ANS:	С	DIF:	Ι	OBJ:	2-1.1
4.	ANS:	А	DIF:	IIIA	OBJ:	2-1.2
5.	ANS:	С	DIF:	IIIB	OBJ:	2-1.2
6.	ANS:	D	DIF:	Ι	OBJ:	2-2.1
7.	ANS:	В	DIF:	Ι	OBJ:	2-2.1
8.	ANS:	А	DIF:	II	OBJ:	2-2.1
9.	ANS:	А	DIF:	II	OBJ:	2-2.2
10.	ANS:	А	DIF:	II	OBJ:	2-2.2
11.	ANS:	D	DIF:	IIIB	OBJ:	2-2.3
12.	ANS:	С	DIF:	IIIA	OBJ:	2-2.3
13.	ANS:	С	DIF:	IIIB	OBJ:	2-2.3
14.	ANS:	В	DIF:	IIIB	OBJ:	2-2.3
15.	ANS:	А	DIF:	IIIB	OBJ:	2-2.3
16.	ANS:	В	DIF:	IIIB	OBJ:	2-2.3
17.	ANS:	С	DIF:	IIIB	OBJ:	2-2.3
18.	ANS:	В	DIF:	Ι	OBJ:	2-3.1
19.	ANS:	В	DIF:	Ι	OBJ:	2-3.1
20.	ANS:	С	DIF:	Ι	OBJ:	2-3.1
21.	ANS:	В	DIF:	II	OBJ:	2-3.1
22.	ANS:	В	DIF:	IIIB	OBJ:	2-3.2
23.	ANS:	А	DIF:	IIIB	OBJ:	2-3.2
24.	ANS:	В	DIF:	IIIB	OBJ:	2-3.2
25.	ANS:	А	DIF:	IIIB	OBJ:	2-3.2
26.	ANS:	С	DIF:	IIIB	OBJ:	2-3.2
27.	ANS:	А	DIF:	IIIB	OBJ:	2-3.2
28.	ANS:	D	DIF:	IIIB	OBJ:	2-3.2
29.	ANS:	А	DIF:	Ι	OBJ:	2-3.3
30.	ANS:	А	DIF:	Ι	OBJ:	2-3.3
31.	ANS:	С	DIF:	Ι	OBJ:	2-3.3
32.	ANS:	С	DIF:	Ι	OBJ:	2-3.3

3-Vectors and 2 dimensional motion

Identify the letter of the choice that best completes the statement or answers the question.

	1.	Which of the following is a	ı phy	sical quantity that has a magnitude but no o	direction?
resultant			c.	vector	a.
frame of reference		nce	d.	scalar	b.
	2.	Which of the following is a	ı phy	vsical quantity that has both magnitude and	direction?
resultant			c.	vector	a.
frame of ref	erer	nce	d.	scalar	b.
	3. a tr	Identify the following quarter, wind velocity.	titie	es as scalar or vector: the mass of an object,	the number of leaves on
scalar, vecto	or, s	calar	c.	vector, scalar, scalar	a.
vector, scala	ar, v	ector	d.	scalar, scalar, vector	b.

	4. Identify the following qua mile, the free-fall acceleration	ntitie	es as scalar or vector: the speed of a snail, the	he time it takes to run a
vector. scal	ar. vector	с.	vector, scalar, scalar	a.
scalar, vect	or. vector	d.	scalar, scalar, vector	b.
,	5 Which of the following is	an e	xample of a vector quantity?	
volume	5. Which of the following is	C C	velocity	а
mass		d.	temperature	h
muss	6 For the winter a duck flig	a 10	0 m/s due south against a gust of wind with	a valority of 2.5 m/s
	What is the resultant velocity	of th	e duck?	a velocity of 2.5 m/s.
7.5 m/s sou	ith	c.	12.5 m/s south	а.
-7.5 m/s sc	outh	d.	-12.5 m/s south	b.
	7. A lightning bug flies at a distance. A light easterly bree velocity of the lightning bug?	veloc ze bl	tity of 0.25 m/s due east toward another light ows on the bug at a velocity of 0.25 m/s. W	ntning bug seen off in the hat is the resultant
0.75 m/s		c.	0.50 m/s	a.
0.25 m/s		d.	0.00 m/s	b.
	8. A jogger runs 10.0 blocks	due	east, 5.0 blocks due south, and another 2.0	blocks due east. Assume
	all blocks are of equal size. Us displacement.	se the	e graphical method to find the magnitude of	f the jogger's net
11.0 blocks	3	c.	14.0 blocks	a.
13.0 blocks	3	d.	8.0 blocks	b.
	9. A cave explorer travels 3. graphical method to find the n	0 m e nagni	eastward, then 2.5 m northward, and finally itude of the net displacement.	15 m westward. Use the
18 m		c.	12 m	а.
15 m		d.	5.7 m	b.
	10. A student adds two vector which is the only possible cho	s wit ice f	h magnitudes of 200 and 40. Taking into a or the magnitude of the resultant?	ccount significant figures,
300	5 I	c.	160	a.
240		d.	200	b.
	11. A car travels down a road traveling only half as fast as b velocity?	at a efore	certain velocity, \mathbf{v}_{car} . The driver slows dow e. Which of the following is the correct expression of the following is the correct expression.	n so that the car is ression for the resulting
$-\frac{1}{2}\mathbf{v_{car}}$		c.	$2\mathbf{v}_{car}$	a.
$-2\mathbf{v_{car}}$		d.	$\frac{1}{2}\mathbf{v}_{car}$	b.
	12. A football player runs in o opposite direction toward the velocity and the resulting velocity	one d goal city?	irection to catch a pass, then turns and runs line. Which of the following is the correct of	twice as fast in the expression for the original
$\mathbf{v}_{\mathbf{player}}, -2\mathbf{v}_{\mathbf{player}}$	olayer	c.	$-\mathbf{v}_{player}, -2\mathbf{v}_{player}$	а.
$2\mathbf{v}_{player}, -\mathbf{v}_{player}$	olayer	d.	v _{player} , 2v _{player}	b.
	13. Multiplying or dividing ve	ector	s by scalars results in	
vectors.				а.
scalars.				b.
vectors if n	nultiplied or scalars if divided.			с.
scalars if m	ultiplied or vectors if divided.			d.
	14. An airplane flying at 120 due east. If the plane's origina for the plane's resulting veloc	km/h l vec ity?	due west moves into a region where the water velocity is v_{plane} , which of the following	ind is blowing at 40 km/h g is the correct expression
3 - V _{plane}		c.	2 - Vplane	a.
2		đ	1	h
$-\frac{1}{3}\mathbf{v}_{\text{plane}}$		u.	$-\frac{1}{3}\mathbf{v_{plane}}$	0.
	15. A student walks from the the bus. The student runs back correct expression for the result.	door to tl	of the house to the end of the driveway and ne house, traveling three times as fast. Whice value ity?	l realizes that he missed ch of the following is the
1	correct expression for the fest	ning C	3V-to-dowt	а
-V-ttt		ς.	- ' student	

 $\frac{1}{3}$ **v**_{student}

-3v _{student}	d.	$\frac{1}{3}$ V _{student}	b.
16. Which of the following is	the t	best coordinate system to analyze a p	ainter climbing a ladder at an
angle of 60° to the ground?		, , , , , , , , , , , , , , , , , , ,	C
x-axis: horizontal along the ground; y-axis:	aloı	ng the ladder	a.
x-axis: up and down; y-axis: horizontal alog	ng tł	ne ground	b.
<i>x</i> -axis: horizontal along the ground; <i>y</i> -axis:	up a	and down	с.
<i>x</i> -axis: along the ladder; <i>y</i> -axis: up and dov	vn		d.
17. Which of the following is city to another?	the t	best coordinate system to analyze a c	ar traveling northeast from one
positive x-axis pointing east; positive y-axi	s po	inting south	a.
positive x-axis pointing west; positive y-ax	is po	pinting east	b.
positive x-axis pointing north; positive y-ax	kis p	ointing south	с.
positive x-axis pointing east; positive y-axi	s po	inting north	d.
18. Which of the following is	the t	best coordinate system to analyze an	object thrown into the air?
x-axis: perpendicular to the ground; y-axis:	up a	and down	а.
<i>x</i> -axis: up and down; <i>y</i> -axis: parallel to the	grou	ind	b.
<i>x</i> -axis: parallel to the ground; <i>y</i> -axis: perpe	ndic	ular to the ground	с.
<i>x</i> -axis: up and down; <i>y</i> -axis: perpendicular	to th	ne ground	d.
19. Which of the following is	the t	best coordinate system to analyze the	e movement of a submarine
diving at an angle of 45° to the	sur	face of the water?	
<i>x</i> -axis: horizontal at the water level; <i>y</i> -axis:	up	and down	a.
<i>x</i> -axis: horizontal at the water level; <i>y</i> -axis:	left	and right	b.
<i>x</i> -axis: left and right; <i>y</i> -axis: horizontal at t	he o	cean bottom	с.
<i>x</i> -axis: up and down; <i>y</i> -axis: horizontal at t	he o	cean bottom	d.
20. An ant on a picnic table tra westward. What is the ant's dir	avels recti	3.0×10^{1} cm eastward, then 25 cm onal displacement relative to its origonal displacement relative to its origonal displacement relative to the statement relative to th	northward, and finally 15 cm inal position?
57 cm at 29° north of west	c.	29 cm at 59° north of east	а.
29 cm at 77° north of east	d.	52 cm at 29° north of east	b.
21. A duck waddles 2.5 m east displacement with respect to it	t and s ori	l 6.0 m north. What are the magnitud ginal position?	le and direction of the duck's
6.5 m at 67° north of east	c.	3.5 m at 19° north of east	а.
6.5 m at 72° north of east	d.	6.3 m at 67° north of east	b.
22. A quarterback takes the ba	11 fro	om the line of scrimmage and runs b	ackward for 1.0×10^1 m then
sideways parallel to the line of	scri	mmage for 15 m. The ball is thrown	forward 5.0×10^1 m
perpendicular to the line of scr displaced from its original pos	imm ition	age. The receiver is tackled immedi	ately. How far is the football
62 m	с.	43 m	а.
75 m	d.	55 m	b.
23. A plane flies from city A t	o cit	y B. City B is 1540 km west and 110 n of the plane?	60 km south of city A. What is
1850 km 37 0° south of west	C.	1930 km 43.0° south of west	a.
1930 km 37.0° south of west	d.	$1850 \text{ km}, 43.0^{\circ} \text{ south of west}$	b.
24 While following directions	on.	a trassure man a person walks 45.0	m south then turns and walks
7.50 m east. Which single strait	ght-	line displacement could the treasure	hunter have walked to reach the
$45.6 \text{ m at } 9.5^{\circ} \text{ east of south}$	C	$45.6 \text{ m at } 9.5^{\circ} \text{ south of east}$	а
$45.6 \text{ m at } 21^{\circ} \text{ south of east}$	d.	$52.5 \text{ m at } 21^{\circ} \text{ east of south}$	u. b
45.0 III at 21 South of east	u.	S2.5 III at 21 Cast of south	to that we stard a mean its de
multiplied by which trigonome axis?	e x-co etric	function, with respect to the angle b	etween the vector and the <i>x</i> -
the tangent of θ	c.	the cosine of θ	a.
the cotangent of θ	d.	the sine of θ	b.
26. In a coordinate system if t	he x	component of a vector and the angle	e between the vector and x-axis
are known, then the magnitude	of t	he vector is calculated by which ope	eration, taken with respect to the
multiplying by the sine of θ	c.	dividing by the sine of θ	a.
· · · ·			

multiplying	by the cosine of θ	d.	dividing by the cosine of θ	b.
	27. A string attached to an airl of string was reeled in to return the kite? (Assume the kite strin	oorne n the ng di	e kite was maintained at an angle of 40.0° w kite back to the ground, what was the horiz d not sag.)	with the ground. If 120 m contal displacement of
77 m		c.	110 m	a.
92 m		d.	84 m	b.
	28. An athlete runs 110 m acro	oss a	level field at an angle of 30.0° north of east	t. What are the east and
	north components, respectively	y, of	this displacement?	
95 m; 55 m		c.	64 m; 190 m	a.
55 m; 95 m		d.	190 m; 64 m	b.
	29. A skateboarder rolls 25.0 r the horizontal and vertical com	n do 1pon	wn a hill that descends at an angle of 20.0° ents of the skateboarder's displacement.	with the horizontal. Find
23.5 m; 73.	1 m	c.	8.55 m; 23.5 m	a.
73.1 m; 26.	6 m	d.	23.5 m; 8.55 m	b.
	30. Find the resultant of these west.	two	vectors: 2.00×10^2 units due east and $4.00 >$	$\times 10^2$ units 30.0° north of
546 units 59	9.3° north of west	c.	300 units 29.8° north of west	a.
248 units 5	3 9° north of west	d.	581 units 20.1° north of east	b.
210 units 5.	31 Vector \mathbf{A} is 3.2 units in ler	nath	and points along the positive $y_{-}axis$ Vector	B is 1.6 units in length
	and points along a direction 19	1gui 95° c nd B	ounterclockwise from the positive x-axis. We are added?	That is the magnitude of
4.8 units	the resultant when vectors A a	C D	1 2 units	a
5.6 units		d.	6.2 units	b.
	32 What is the resultant displa	acem	ent of a dog looking for its hone in the yard	if the dog first heads
	55° north of west for 100 m a	accin	hen turns and heads west for 5 00 m?	i, ii the dog first heads
13.5 m at 3	7° north of east	C.	11.2 m at 63° west of north	а.
62.1 m at 7	4° north of west	d.	13.5 m at 37° north of west	b.
02.1 m ut 7	22 A hiker welks 4.5 km at ar		13.5 in at 37 hora of west than the hiker well	xa 4.5 km south What is
	the magnitude and direction of	r ang Ethe	hiker's total displacement?	AS 4.5 KIII SOULII. W Hat IS
$6.4 \text{ km } 45^{\circ}$	north of west	C.	3.5 km 22° south of west	а.
$6.4 \text{ km} 22^{\circ}$	south of west	d.	$3.5 \text{ km}, 22^\circ$ south of west	h
0.4 Kiii, 22	24 Which of the following is	tho r	s.s. kin, 22 north of west	under the influence of
	gravity?		notion of objects moving in two dimensions	under the influence of
parabola		c.	horizontal velocity	a.
projectile n	notion	d.	directrix	b.
	35. Which of the following is	an ez	kample of projectile motion?	
a jet lifting	off a runway			a.
a bullet bei	ng fired from a gun			b.
dropping ar	aluminum can into the recyclin	ng bi	n	с.
a space shu	ttle orbiting Earth			d.
	36. Which of the following is	NOT	an example of projectile motion?	
a hot-air ba	lloon drifting toward Earth	c.	a volleyball served over a net	a.
a long jump	per in action	d.	a baseball hit by a bat	b.
	37. What is the path of a proje	ctile	?	
a wavy line				a.
a parabola				b.
a nyperbola	de not follow a nuclistable noth			C.
Projectiles	20 Will 1 Gill Gill	l. 1 •1 •7		d.
ľ.	38. Which of the following ex	hibit	s parabolic motion?	
a person di	ving into a pool from a diving b	oard		a.
a space snu	a from a tree			U. C
a train mov	g nom a nee ing along a flat track			d.
a nam mov	20 Which of the faller is a	OC NT	OT aphibit parabolic motion?	u.
a frog jum	ing from land into water	CS IN	Or exhibit parabolic motion?	9
a nog jump a basketbal	thrown to a hoop			a. h
a basketual	a noop			υ.

a flat piece of paper released from a window a baseball thrown to home plate

	40. A stone is thrown at an ar initial speed of 12 m/s. A stop bottom at 5.6 s. What is the he	igle o watc eight	of 30.0° above the horizontal from the top h measures the stone's trajectory time fro of the cliff? (Disregard air resistance. $g =$	edge of a cliff with an m the top of the cliff to the 9.81 m/s^2 .)
120 m		c.	58 m	a.
180 m		d.	150 m	b.
	41. A track star in the long ju horizontal. How long is she in	mp g	oes into the jump at 12 m/s and launches air before returning to Earth? ($g = 9.81$ m	herself at 20.0° above the (s^2)
1.5 s		c.	0.42 s	a.
1.2 s		d.	0.83 s	b.
	42. A model rocket flies horiz below is 100.0 m deep, how fa	zonta ar fro	lly off the edge of the cliff at a velocity of om the edge of the cliff does the model roo	f 50.0 m/s. If the canyon cket land?
337 m		c.	112 m	a.
400 m		d.	225 m	b.
	43. A firefighter 50.0 m away angle of 30.0° above the horiz stream of water strike the buil	fron conta ding	n a burning building directs a stream of w l. If the velocity of the stream is 40.0 m/s, ?	ater from a fire hose at an at what height will the
18.7 m		c.	9.60 m	a.
22.4 m		d.	13.4 m	b.
	44. Which of the following is space?	a co	ordinate system for specifying the precise	location of objects in
frame of ref	erence	c.	<i>x</i> -axis	a.
diagram		d.	y-axis	b.
	45. A passenger on a bus mov perspective, the man appears	ving e to	east sees a man standing on a curb. From	the passenger's
stand still.				а.
move west	at a speed that is less than the b	ous's	speed.	b.
move west at a speed that is equal to the bus's speed.				с.
move east a	t a speed that is equal to the bu	peed.	d.	
	46. A piece of chalk is dropped perspective, the chalk appears	ed by to fa	a teacher walking at a speed of 1.5 m/s. I all	From the teacher's
straight dov	vn and forward.	c.	straight down.	a.
straight bac	kward.	d.	straight down and backward.	b.
	47. A jet moving at 500.0 km in a direction 30.0° north of earound?	/h du ast. V	e east moves into a region where the wind What is the new velocity and direction of t	d is blowing at 120.0 km/h he aircraft relative to the
550.0 km/h.	6.22° north of east	c.	607 km/h, 5.67° north of east	a.
588 km/h, 4		d.	620.0 km/h, 7.10° north of east	b.
	48. A boat moves at 10.0 m/s m/s, how long does it take the 1000.0 m downstream?	relat boat	ive to the water. If the boat is in a river w to make a complete round trip of 1000.0	here the current is 2.00 m upstream followed by
208 s		c.	199 s	a.
251 s		d.	203 s	b.
	49. A superhero flying at tree is 1.00 km away from the tow superhero have to save the per-	top le er an ople	evel sees the Eiffel Tower elevator begin d the elevator falls from a height of 240.0 in the elevator? What should the superher	to free fall. If the superhero 0 m, how long does the o's average velocity be?
7 s; 143 m/s	3	c.	7 s; 333 m/s	а.
9 s; 111 m/s	6	d.	5 s; 200 m/s	b.
	50. A small airplane flies at a ground. The airplane pilot me wind that affects the plane?	velo asure	city of 145 km/h toward the south as obse an air velocity of 170.0 km/h south. Wh	erved by a person on the nat is the velocity of the
315 km/h so	outh	c.	25 km/h south	a.
315 km/h n	orth	d.	25 km/h north	b.

3-Vectors an2 2 dimentional motion Answer Section

1.	ANS:	В	DIF:	I		OBJ:	3-1.1
2.	ANS:	А	DIF:	I		OBJ:	3-1.1
3.	ANS:	В	DIF:	I	Ι	OBJ:	3-1.1
4.	ANS:	В	DIF:	I	Ι	OBJ:	3-1.1
5.	ANS:	А	DIF:	I		OBJ:	3-1.1
6.	ANS:	С	DIF:	I	Ι	OBJ:	3-1.2
7.	ANS:	В	DIF:	I	Ι	OBJ:	3-1.2
8.	ANS:	D	DIF:	I	IIB	OBJ:	3-1.2
9.	ANS:	А	DIF:	I	IIB	OBJ:	3-1.2
10.	ANS:	В	DIF:	I	IIA	OBJ:	3-1.2
11.	ANS:	В	DIF:	I	Ι	OBJ:	3-1.3
12.	ANS:	С	DIF:	I	Ι	OBJ:	3-1.3
13.	ANS:	А	DIF:	I		OBJ:	3-1.3
14.	ANS:	А	DIF:	I	IIA	OBJ:	3-1.3
15.	ANS:	D	DIF:	I		OBJ:	3-1.3
16.	ANS:	С	DIF:	I		OBJ:	3-2.1
17.	ANS:	D	DIF:	I		OBJ:	3-2.1
18.	ANS:	С	DIF:	I		OBJ:	3-2.1
19.	ANS:	А	DIF:	I		OBJ:	3-2.1
20.	ANS:	А	DIF:	I	IIB	OBJ:	3-2.2
21.	ANS:	С	DIF:	I	IIB	OBJ:	3-2.2
22.	ANS:	А	DIF:	I	IIB	OBJ:	3-2.2
23.	ANS:	D	DIF:	I	IIB	OBJ:	3-2.2
24.	ANS:	С	DIF:	I	IIC	OBJ:	3-2.2
25.	ANS:	А	DIF:	I	Ι	OBJ:	3-2.3
26.	ANS:	В	DIF:	I	Ι	OBJ:	3-2.3
27.	ANS:	D	DIF:	I	IIB	OBJ:	3-23
28.	ANS:	С	DIF:	I	IIB	OBJ:	3-2.3
29.	ANS:	В	DIF:	I	IIB	OBJ:	3-2.3
30.	ANS:	D	DIF:	I	IIB	OBJ:	3-2.4
31.	ANS:	С	DIF:	I	IIB	OBJ:	3-2.4
32.	ANS:	В	DIF:	I	Ι	OBJ:	3-2.4
33.	ANS:	А	DIF:	I	Ι	OBJ:	3-2.4
34.	ANS:	D	DIF:	I		OBJ:	3-3.1
35.	ANS:	В	DIF:	I		OBJ:	3-3.1
36.	ANS:	С	DIF:	I		OBJ:	3-3.1
37.	ANS:	В	DIF:	I		OBJ:	3-3.2
38.	ANS:	А	DIF:	I		OBJ:	3-3.2
39.	ANS:	С	DIF:	I		OBJ:	3-3.2
40.	ANS:	С	DIF:	I	Ι	OBJ:	3-3.3
41.	ANS:	В	DIF:	I	IIB	OBJ:	3-3.3
42.	ANS:	В	DIF:	I	IIB	OBJ:	3-3.3
43.	ANS:	С	DIF:	I	IIB	OBJ:	3-3.3
44.	ANS:	С	DIF:	I	Ι	OBJ:	3-4.1
45.	ANS:	С	DIF:	I		OBJ:	3-4.1
46.	ANS:	А	DIF:	I		OBJ:	3-4.1
47.	ANS:	А	DIF:	I	IIB	OBJ:	3-4.2
48.	ANS:	С	DIF:	I	IIC	OBJ:	3-4.2
49.	ANS:	С	DIF:	I	IIB	OBJ:	3-4.2
50.	ANS:	В	DIF:	I	Ι	OBJ:	3-4.2

4- Forces and laws of motion

1. Which of the following is the cause of an acceleration or a change in an object's motion? force c. speed a. d. inertia velocity b. 2. Which of the following statements does NOT describe force? Force causes objects at rest to remain stationary. a. Force causes objects to start moving. b. Force causes objects to stop moving. c. Force causes objects to change direction. d 3. What causes a moving object to change direction? inertia c. acceleration a. d. velocity force b. 4. Which of the following forces arises from direct physical contact between two objects? c. gravitational force contact force a. d. fundamental force field force b. 5. Which of the following forces exists between objects even in the absence of direct physical contact? c. frictional force contact force a. d. fundamental force field force b. 6. Which of the following forces is an example of a contact force? electric force c. gravitational force a. frictional force d. magnetic force b. 7. Which of the following forces is an example of a field force? normal force c. gravitational force a. d. frictional force tension b.

Identify the letter of the choice that best completes the statement or answers the question.

,	13 690 N
5800 N	775 N
	14 700 N

8. In the free-body diagram shown above, which of the following is the gravitational force acting on the car?

14 700 N		c. 5800 N	a.
13 690 N		d. 775 N	b.
	9.	In the free-body diagram show above, the 5800 N force represents	

the gravitational force acting on the car. a. the backward force the road exerts on the car. b. the upward force the road exerts on the car. c. the force exerted by a towing cable on the car. d. 10. A free-body diagram of a ball in free fall in the presence of air resistance would show a downward arrow to represent the force of air resistance. а only a downward arrow to represent the force of gravity. b. a downward arrow to represent the force of gravity and an upward arrow to represent the c. force of air resistance.

an upward arrow to represent the force of gravity and a downward arrow to represent the d. force of air resistance.

	11. In the free-body diagram show	vn above, which of the following is the gravi	tational force acting on
4050 N		1520 N	9
4030 N 5120 N	e. d	950 N	a. b
J120 IN	12 Which of the following is the	150 M	U.
<u> </u>	12. Which of the following is the	tendency of an object to maintain its state of	motion ?
lorce	С. А		a. h
velocity	u.	merua	0.
	13. A late traveler rushes to catch horizontal. If the horizontal compoon the handle?	a plane, pulling a suitcase with a force direct onent of the force on the suitcase is 60.6 N, v	ted 30.0° above the what is the force exerted
65.2 N	с.	53.0 N	a.
95.6 N	d.	70.0 N	b.
	14. A car goes forward along a lev car into equilibrium is	vel road at constant velocity. The additional	force needed to bring the
greater that	the normal force times the coeffic	ient of static friction.	a.
equal to the	e normal force times the coefficient	of static friction.	b.
the normal	force times the coefficient of kineti	c friction.	с.
zero.			d.
	15. A sled is pulled at a constant v being applied to the sled rope at an sled and the snow?	velocity across a horizontal snow surface. If a angle of 53° to the ground, what is the force	a force of 8.0×10^1 N is e of friction between the
48 N	с.	83 N	a.
42 N	d.	64 N	b.
	16. A trapeze artist weighs $8.00 \times$	10^2 N. The artist is momentarily held to one	side of a swing by a
	partner so that both of the swing restatic equilibrium, what is the hori	opes are at an angle of 30.0° with the vertica zontal force being applied by the partner?	l. In such a condition of
196 N	с.	924 N	a.
462 N	d.	433 N	b.
	17. If a nonzero net force is acting	g on an object, then the object is definitely	
being accel	erated. c.	at rest.	a.
losing mas	s. d.	moving with a constant velocity.	b.
	18. A wagon with a weight of 300 acts on the wagon? ($g = 9.81 \text{ m/s}^2$)	0.0 N is accelerated across a level surface at (0.5 m/s^2 . What net force
150 N	с.	9.0 N	a.
610 N	d.	15 N	b.
	19. Which statement about the acc	celeration of an object is correct?	
The acceler	ration of an object is directly proport	tional to the net external force acting on the	a.
object and	inversely proportional to the mass of	of the object.	
The acceler	ation of an object is directly proport	tional to the net external force acting on the	b.
object and	directly proportional to the mass of	the object.	
The acceler	ation of an object is inversely prop	ortional to the net external force acting on	с.
the object a	nd inversely proportional to the ma	ss of the object.	

The acceleration of an object is inversely proportional to the net external force acting on d. the object and directly proportional to the mass of the object.

	20. A small force acting on a	hum	an-sized object causes	2
equilibrium		с. d.	no acceleration.	a. b.
- 1	21. According to Newton's se	econ	d law, when the same force is applied to two	objects of different
	masses,			
the object w mass will e	with greater mass will experience experience an even greater acce	ce a lerat	great acceleration and the object with less	a.
the object w	with greater mass will experience	ce a	smaller acceleration and the object with less	b.
the object w	with greater mass will experience	ce a	greater acceleration and the object with less	с.
the object w	with greater mass will experience	n. ce a	small acceleration and the object with less	d.
mass will e	xperience an even smaller acce	elera	tion.	
	22. Two perpendicular forces right, act simultaneously on an acceleration of the object?	, one n ob	e of 45.0 N directed upward and the second of ject with a mass of 35.0 kg. What is the magn	60.0 N directed to the itude of the resultant
2.14 m/s^2	, i i i i i i i i i i i i i i i i i i i			a.
3.00 m/s^2				b.
5.25 m/s^2				с.
1.41 m/s^2				d.
	23. A sailboat with a mass of and a wind force against its sa of W). What is the magnitude	2.0 uils v of th	× 10^3 kg experiences a tidal force of 3.0×10^3 with a magnitude of 6.0×10^3 N directed towar he resultant acceleration of the boat?	N directed to the east rd the northwest (45° N
1.5 m/s^2	, C	c.	2.2 m/s^2	a.
4.4 m/s^2		d.	2.1 m/s^2	b.
	24. An airplane with a mass of propellers provide a net forward	of 1.2 ard tl	2×10^4 kg tows a glider with a mass of 0.60 × must of 3.6×10^4 N, what is the acceleration of 2.6×10^2 N, what is the acceleration of 3.6×10^4 N, whet is the acceleration of 3.6×10^4 N, whet is the acceleration of 3.6×10^4 N, whet is the acceleration of 3.6×10^4 N, whet is the acceleration of 3.6×10^4 N, whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet is the acceleration of 3.6×10^4 N whet	10^4 kg. If the airplane of the glider?
6.0 m/s^2		C.	2.0 m/s^2	a.
9.8 m/s ⁻	25. An elevator weighing 2.0	0×1	3.0 m/s^{-1} 10 ⁵ N is supported by a steel cable. What is the	b. e tension in the cable
2 42 105 1	when the elevator is accelerate	ed u	pward at a rate of 3.00 m/s ^{-?} ($g = 9.81 \text{ m/s}^{-1}$)	0
2.42×10^{-1}		с. d	$1.39 \times 10^{5} \text{ N}$	a. h
2.01 × 10 1		u.	2.51 × 10 N	U.
	26. A nammer drives a nail in forces exerted by each object.	ito a	piece of wood. Identify an action-reaction par	ir, and compare the
The nail exe	erts a force on the hammer; the	e han	nmer exerts a force on the wood.	a.
The hamme	er exerts a force on the nail; the	wo	od exerts a force on the nail.	b.
The hamme	er exerts a force on the nail; the	e nai	l exerts a force on the nammer.	С.
The namme	er exerts a force on the hall; the	e nan	nmer exerts a force on the wood.	d.
	27. A hockey stick hits a puck exerted by each object.	k on	the ice. Identify an action-reaction pair, and c	compare the forces
The stick ex	kerts a force on the puck; the p	uck	exerts a force on the stick.	a.
The stick ex	kerts a force on the puck; the p	uck	exerts a force on the ice.	b.
The puck ex	xerts a force on the idea the idea	ICK (exerts a force on the puck	С. d
The stick e				u.
	28. A leaf falls from a tree an forces exerted by each object.	d lai	nds on the sidewalk. Identify an action-reactio	on pair, and compare the
The tree exe	erts a force on the leaf; the side	ewal	k exerts a force on the leaf.	a.
The leaf exe	erts a force on the sidewalk; the	e sic	lewalk exerts a force on the leaf.	b.
The leaf ex	erts a force on the sidewalks the	e tro	a exerts a force on the leaf	С. d
	20 A hall is drawned from a		e exerts a force on the reat.	u.
	compare the forces exerted by	v eac	h object.	i-reaction pair, and
The hand ex	xerts a force on the ball; Earth	exer	ts a force on the hand.	a.
Earth exerts	s a torce on the ball; the hand e	exert	s a force on Earth.	b.
Earth exerts	s a force on the hand; the hand	exei	as a force on the ball.	с. d
Earth exerts	s a gravitational force on the ba	uii, (ne can exerts a gravitational force on Earth.	u.

	30. The statement by Newton his laws of motion?	n that	for every action there is an equa	l but opposite reaction is which of
third		c.	first	a.
fourth		d.	second	b.
	31. Which are simultaneous	equal	but opposite forces resulting fro	m the interaction of two objects?
gravitatio	nal lorces	с. d	field foreas	a. b
action-rea		u.		
	<i>32.</i> As a basketball player sta faster until his shoes leave the the shoes is	e floo	or. At the moment the player beg	ins to jump, the force of the floor on
greater the	an the player's weight.			a.
equal in n	nagnitude and opposite in direct	ion to	o the player's weight.	b.
less than t	the player's weight.			С.
zero.				d.
	33. The magnitude of the for	ce of	gravity acting on an object is	
inertia.		С. Л	Inictional force.	a. h
mass.		u.	weight.	D.
<u> </u>	34. A measure of the quantity	y of r	natter 1s	
force.		С.	density.	a.
mass.		a.	weight.	D.
<u> </u>	35. A change in the force of	gravı	ty acting on an object will affect	the object's
weight.		С.	mass.	a.
inertia.		a.	Incuonal force.	D.
	36. A weight of 5.00×10^{9} N force to the right of the objec an angle of 37.0° to the negati	1s su t and tive x	Ispended in equilibrium by two c has a tension, \mathbf{F}_{T1} . Cable 2 appli -axis and has a tension, \mathbf{F}_{T2} . What	ables. Cable 1 applies a horizontal es a force upward and to the left at at is \mathbf{F}_{T2} ?
8310 N		c.	4440 N	a.
3340 N		d.	6640 N	b.
	37. A sled weighing 1.0×10 stake at the top. The rope is p sled?	² N i arall	s held in place on a frictionless 2 el to the slope. What is the norma	0.0° slope by a rope attached to a al force of the slope acting on the
37 N		c.	94 N	a.
34 N		d.	47 N	b.
	38. A mule uses a rope to purvelocity. The rope makes an 1.0×10^2 N. What is the norm	ll a b angle nal fo	by that weighs 3.0×10^2 N across of 30.0° above the horizontal, as	s a level surface with constant and the tension in the rope is
50.0 N		с. а	300.0 N 94 N	a. h
250 N		a.	80 IN	D.
	39. A book with a mass of 2. horizontal force. What is the	0 kg norm	al force exerted by the book?	with a slope of 60.0° by a
34 N		с. А	61 N	a. b
<u> </u>	40. A couch with a mass of 1 end of the ramp is raised, the an acceleration of 0.70 m/s ² w between the ramp and couch ($g = 9.81$ m/s ²)	× 1(couc when	p^{2} kg is placed on an adjustable range downward. If the ramp angle is 25°, what is the	amp connected to a truck. As one he couch slides down the ramp with e coefficient of kinetic friction
0.39		c.	0.47	a.
0.12		d.	0.42	b.
	41. There are six books in a sbooks is 0.2. With what horiz bottom one?	stack conta	and each book weighs 5 N. The force must one push to start slice	coefficient of friction between the ling the top five books off the
3 N		c.	1 N	a.
7 N		d.	5 N	b.
	42. A crate is carried in a pic for a distance of 28.7 m while friction between the crate and	kup t e stop l the	ruck traveling horizontally at 15 pping with uniform acceleration. truck bed if the crate does not sli	0 m/s. The truck applies the brakes What is the coefficient of static de?

0.892	с.	0.400	a.
0.656	d.	0.365	b.
	43. An ice skater moving at 10.0 r the coefficient of friction between	n/s coasts to a halt in 1.0×10^2 m on a smoother the ice and the skates?	th ice surface. What is
0.102	с.	0.025	a.
0.205	d.	0.051	b.
	44. An Olympic skier moving at 2 slides 145 m before coming to a ha	0.0 m/s down a 30.0° slope encounters a reg alt. What is the coefficient of friction betwee	ion of wet snow and on the skis and the snow?
0.116	с.	0.540	a.
0.470	d.	0.740	b.

4- Forces and laws of motion Answer Section

1.	ANS:	С	DIF:	Ι	OBJ:	4-1.1
2.	ANS:	А	DIF:	Ι	OBJ:	4-1.1
3.	ANS:	D	DIF:	Ι	OBJ:	4-1.1
4.	ANS:	С	DIF:	Ι	OBJ:	4-1.2
5.	ANS:	D	DIF:	Ι	OBJ:	4-1.2
6.	ANS:	D	DIF:	Ι	OBJ:	4-1.2
7.	ANS:	А	DIF:	Ι	OBJ:	4-1.2
8.	ANS:	С	DIF:	Ι	OBJ:	4-1.3
9.	ANS:	D	DIF:	Ι	OBJ:	4-1.3
10.	ANS:	С	DIF:	Ι	OBJ:	4-1.3
11.	ANS:	С	DIF:	Ι	OBJ:	4-1.3
12.	ANS:	В	DIF:	Ι	OBJ:	4-2.1
13.	ANS:	В	DIF:	IIIB	OBJ:	4-2.2
14.	ANS:	D	DIF:	Ι	OBJ:	4-2.3
15.	ANS:	С	DIF:	IIIB	OBJ:	4-2.3
16.	ANS:	D	DIF:	IIIB	OBJ:	4-2.3
17.	ANS:	С	DIF:	Ι	OBJ:	4-3.1
18.	ANS:	В	DIF:	IIIB	OBJ:	4-3.1
19.	ANS:	А	DIF:	Ι	OBJ:	4-3.1
20.	ANS:	А	DIF:	Ι	OBJ:	4-3.1
21.	ANS:	В	DIF:	Ι	OBJ:	4-3.1
22.	ANS:	А	DIF:	IIIB	OBJ:	4-3.2
23.	ANS:	А	DIF:	IIIB	OBJ:	4-3.2
24.	ANS:	А	DIF:	IIIB	OBJ:	4-3.2
25.	ANS:	D	DIF:	IIIB	OBJ:	4-3.2
26.	ANS:	С	DIF:	Ι	OBJ:	4-3.3
27.	ANS:	А	DIF:	Ι	OBJ:	4-3.3
28.	ANS:	В	DIF:	Ι	OBJ:	4-3.3
29.	ANS:	D	DIF:	Ι	OBJ:	4-3.3
30.	ANS:	С	DIF:	Ι	OBJ:	4-3.3
31.	ANS:	D	DIF:	Ι	OBJ:	4-3.3
32.	ANS:	А	DIF:	IIIB	OBJ:	4-3.4
33.	ANS:	В	DIF:	Ι	OBJ:	4-4.1
34.	ANS:	D	DIF:	Ι	OBJ:	4-4.1
35.	ANS:	С	DIF:	Ι	OBJ:	4-4.1
36.	ANS:	С	DIF:	IIIB	OBJ:	4-4.2
37.	ANS:	А	DIF:	IIIB	OBJ:	4-4.2
38.	ANS:	D	DIF:	IIIB	OBJ:	4-4.2
39.	ANS:	А	DIF:	IIIA	OBJ:	4-4.2
40.	ANS:	С	DIF:	IIIC	OBJ:	4-4.4
41.	ANS:	В	DIF:	IIIB	OBJ:	4-4.4
42.	ANS:	А	DIF:	IIIB	OBJ:	4-4.4
43.	ANS:	В	DIF:	IIIB	OBJ:	4-4.4
44.	ANS:	В	DIF:	IIIC	OBJ:	4-4.4

Identify the letter of the choice that best completes the statement or answers the question.

 1. A force does work on an object if a compo- is perpendicular to the displacement of the object	nent of the force ect.
is parallel to the displacement of the object.	
perpendicular to the displacement of the object that returns the object to its starting position. parallel to the displacement of the object move returns the object to its starting position.	moves the object along a path the object along a path that
 2. What is the common formula for work? $W = Fd^2$	$W = Fd(sin \ \theta)$
$W = F^2 d$	W = Fd
 3. Work is done when the displacement is not zero.	
the displacement is zero.	
the force is zero.	
the force and displacement are perpendicular.	
 4. A 1.00×10^3 kg sports car accelerates from output of the automobile engine? 41.7 kW	n rest to 25.0 m/s in 7.50 s. What is the average power
52.4 kW	30.3 kW
 5. The more powerful the motor is, the longer the time interval for doing the work	is.
the shorter the time interval for doing the work	is.
the greater the ability to do the work is.	
the shorter the workload is.	
 6. The magnitude of the component of the for done on a bookshelf being pulled 5.00 m at an 129 J	rce that does the work is 43.0 N. How much work is angle of 37.0° from the horizontal? 172 J
792 J	215 J
 7. A worker pushes a wheelbarrow with a hor a frictional force of 43 N acts on the wheelbarr work is done on the wheelbarrow? 35 J	rizontal force of 50.0 N over a level distance of 5.0 m. If row in a direction opposite to that of the worker, what net 250 J
10.0 J	0.0 J
 8. A hill is 100 m long and makes an angle of hill, how much work does gravity do on the jog	f 12° with the horizontal. As a 50 kg jogger runs up the gger?

-10 000 J	50 000 J
0.0 J	10 000 J
 9. A child moving at constant velocity carries the net work done on the ice-cream cone? 2 J	es a 2 N ice-cream cone 1 m across a level surface. What 0 J
20 J	0.5 J
 10. A construction worker pushes a wheelba work is done by the worker on the wheelbarr 250 J	rrow 5.0 m with a horizontal force of 50.0 N. How much ow? 10 J
55 J	1250 J
 11. A horizontal force of 200 N is applied to What is the work done by the 200 N force on 2000 J	move a 55 kg television set across a 10 m level surface. the television set? 4000 J
6000 J	5000 J
 12. A flight attendant pulls a 50.0 N flight ba constant speed. A 30.0 N force is exerted on much work is done on the flight bag?	ag a distance of 250.0 m along a level airport floor at a the bag at an angle of 50.0° above the horizontal. How
4820 J	12 500 J
8040 J	7510 J
 13. Which of the following energy forms is t energy?nonmechanical energy	he sum of kinetic energy and all forms of potential total energy
mechanical energy	sum (Σ) energy
 14. Which of the following energy forms is i gravitational potential energy	nvolved in winding a pocket watch? electrical energy
elastic potential energy	nonmechanical energy
 15. Which of the following energy forms is l gravitational potential energy	NOT involved in hitting a tennis ball? kinetic energy
elastic potential energy	chemical potential energy
 16. Which of the following energy forms is i kinetic energy	nvolved in a pencil falling from a desk?
nonmechanical energy	
gravitational potential energy	
elastic potential energy and kinetic energy	
 17. A 3.00 kg toy falls from a height of 10.0 energy? (Disregard air resistance. $g = 9.81$ m 29.4 J	m. Just before hitting the ground, what will be its kinetic $\sqrt{s^2}$.) 98.0 J

_	18. If the only force acting on an object is frict following assumptions must be made in regard The kinetic energy decreases.	ion during a given physical process, which of the to the object's kinetic energy?
	The kinetic energy increases.	
	The kinetic energy remains constant.	
	The kinetic energy decreases and then increase	S.
	19. What is the kinetic energy of a 0.135 kg ba 108 J	seball thrown at 40.0 m/s? 54.0 J
	216 J	87.0 J
_	20. If both the mass and the velocity of a ball a	re tripled, the kinetic energy of the ball is increased by a
	factor of 9.	3.
	27.	6.
	21. Which of the following energy forms is ass nonmechanical energy	sociated with an object in motion? potential energy
	kinetic energy	elastic potential energy
	22. Which of the following energy forms is ass total	sociated with an object due to its position? potential
	kinetic	positional
	23. The main difference between kinetic energy kinetic energy involves position and potential energy energy involves position and potential energy ener	y and potential energy is that energy involves motion.
	kinetic energy involves motion and potential en	nergy involves position.
	although both energies involve motion, only ki	netic involves position.
	although both energies involve position, only p	otential involves motion.
	24. Which of the following energy forms is ass Earth?	sociated with an object due to its position relative to
	gravitational potential energy	potential energy
	kinetic energy	elastic potential energy
	25. Which of the following energy forms is sto gravitational potential energy	red in any compressed or stretched object? nonmechanical energy
	kinetic energy	elastic potential energy
	26. The equation for determining gravitational equation is (are) NOT a property of an object?	potential energy is $PE_g = mgh$. Which factor(s) in this
	m 	8
	both g and h	h

 27. Which of the following parameters does no or stretched?	ot express how resistant a spring is to being compressed
spring constant	compression distance
stretching distance	relaxed length
 28. Which form of energy is involved in weigh gravitational potential energy	ning fruit on a spring scale? kinetic energy
elastic potential energy	nonmechanical energy
 29. Which of the following energy forms is ass	sociated with an object's interaction with the
mechanical energy	potential energy
nonmechanical energy	kinetic energy
 30. As an object is lowered into a deep hole in made in regard to the object's potential energy. The potential energy increases.	the ground, which of the following assumptions must be?
The potential energy decreases.	
The potential energy remains constant.	
The potential energy increases and then decrea	ses.
 31. A 40.0 N crate is pulled up a 5.0 m inclined an angle of 37° to the horizontal and there is a and the surface, what is the net gain in potentia 210 J	d plane at a constant velocity. If the plane is inclined at constant force of friction of 10.0 N between the crate l energy by the crate? 120 J
–210 J	-120 J
 32. A 0.002 kg coin, which has zero potential coin comes to a stop in the mud, what is its pot -0.196 J	energy at rest, is dropped into a 10.0 m well. After the ential energy? 0.000 J
0.020 J	0.196 J
 33. An 80.0 kg climber with a 20.0 kg pack cli climber's potential energy?	mbs 8848 m to the top of Mount Everest. What is the
$2.47 \times 10^{\circ} \text{ J}$	$6.94 \times 10^{\circ} \text{ J}$
$1.00 imes 10^6 ext{ J}$	$4.16 \times 10^6 \text{ J}$
 34. A 5.00×10^2 N crate is at the top of a 5.00 What is its potential energy? ($g = 9.81$ m/s ² .)	m ramp, which is inclined at 20.0° with the horizontal.
015 J	0.0.0
8390 J	2350 J
 35. In the presence of frictional force, nonmechanical energy is negligible and mecha conserved. nonmechanical energy is negligible and mecha	nical energy is no longer nical energy is conserved.

nonmechanical energy is no longer negligible conserved. nonmechanical energy is no longer negligible longer conserved.	and mechanical energy is and mechanical energy is no
 36. Why doesn't the principle of mechanical forces are present?Kinetic energy is not simply converted to a force	energy conservation hold in situations when frictional orm of potential energy.
Potential energy is simply converted to a form	n of gravitational energy.
Chemical energy is not simply converted to e	lectrical energy.
Kinetic energy is simply converted to a form	of gravitational energy.
 37. Which of the following are examples of c mechanical energy and mass	onservable quantities? potential energy and length
kinetic energy and mass	mechanical energy and length
 38. A 16.0 kg child on roller skates, initially a with the horizontal. If there is no friction betw child at the bottom of the incline? ($g = 9.81$ m 11 J	at rest, rolls 2.0 m down an incline at an angle of 20.0° ween incline and skates, what is the kinetic energy of the h/s^2 .) 210 J
110 J	610 J
 39. Old Faithful geyser in Yellowstone Natio With what velocity does the water leave the g 19.8 m/s	nal Park shoots water every hour to a height of 40.0 m. round? (Disregard air resistance. $g = 9.81 \text{ m/s}^2$.) 7.00 m/s
28.0 m/s	14.0 m/s
 40. A pole vaulter clears 6.00 m. With what v area? (Disregard air resistance. $g = 9.81 \text{ m/s}^2$. 10.8 m/s	velocity does the vaulter strike the mat in the landing) 2.70 m/s
21.6 m/s	5.40 m/s
 41. A bobsled zips down an ice track starting friction, what is the velocity of the bobsled at $(g = 9.81 \text{ m/s}^2.)$	at 150 m vertical distance up the hill. Disregarding the bottom of the hill?
45 m/s	27 m/s
54 m/s	36 m/s
 42. A professional skier starts from rest and r horizontal. Using the work–kinetic energy the distance along the slope the skier would have 320 m	eaches a speed of 56 m/s on a ski slope 30.0° above the corem and disregarding friction, find the minimum to travel in order to reach this speed. 110 m
640 m	160 m
 43. A 40.0 N crate starting at rest slides down horizontal. The force of friction between the or theorem, find the velocity of the crate at the b 4.5 m/s	n a rough 6.0 m long ramp inclined at 30.0° with the crate and ramp is 6.0 N. Using the work–kinetic energy ottom of the incline. 8.7 m/s
6.4 m/s	3.3 m/s

 44. A 15.0 kg crate, initially at rest, slides down a ramp 2.0 m long and inclined at an angle of 20.0° with the horizontal. Using the work–kinetic energy theorem and disregarding friction, find the velocity of the crate at the bottom of the ramp. ($g = 9.81 \text{ m/s}^2$.)		
9.7 m/s	6.1 m/s	
8.3 m/s	3.7 m/s	
 45. A parachutist with a mass of 50.0 kg jump the parachute deploys, the parachutist lands wi theorem, find the energy that was lost to air res 198 000 J	s out of an airplane at an altitude of 1.00×10^3 m. After th a velocity of 5.00 m/s. Using the work–kinetic energy sistance during this jump. ($g = 9.81$ m/s ² .) 49 300 J	
489 000 J	98 800 J	
 46. A horizontal force of 2.00×10^2 N is applied accelerating it 2.00 m/s ² . Using the work–kinet the motion of the cart? (Disregard air resistance 80.0 N	ed to a 55.0 kg cart across a 10.0 m level surface, tic energy theorem, find the force of friction that slows e. $g = 9.81 \text{ m/s}^2$.) 110 N	
70.0 N	90.0 N	
 47. A child riding a bicycle has a total mass of 10.0 m high and 100.0 m long at 5.0 m/s. If the N, what is the child's velocity at the bottom of 5.0 m/s	² 40.0 kg. The child approaches the top of a hill that is e force of friction between the bicycle and the hill is 20.0 the hill? (Disregard air resistance. $g = 9.81 \text{ m/s}^2$.)	
10.0 m/s		
11 m/s		
The child stops before reaching the bottom.		
 48. Which of the following is the rate at which mechanical energy	n energy is transferred? potential energy	
power	kinetic energy	
 49. Which of the following equations is NOT a $P = Fv$	an equation for power? $P = F \frac{d}{\Delta t}$	
$P = \frac{F\nu}{\Delta t}$	$P = \frac{W}{\Delta t}$	
 50. What is the average power supplied by a 6 vartically $4.0 \text{ m in } 4.2 \text{ s}^2$	0.0 kg secretary running up a flight of stairs rising	
610 W	380 W	
670 W	560 W	
 51. What is the average power output of a weig 4.9 kW	ght lifter who can lift 250 kg 2.0 m in 2.0 s? 5.0×10^2 W	
9.8 kW	2.5 kW	
 52. A jet engine develops 1.0×10^5 N of thrust	t to move an airplane forward at a speed of 9.0×10^2	

sz. A jet engine develops 1.0×10^{-10} N of thrust km/h. What is the power output of the engine?

25 MW	550 kW
5.0 MW	1.0 MW
53. Water flows over a section of Niagara Falls the power of the waterfall?	s at a rate of 1.20×10^6 kg/s and falls 50.0 m. What is
147 MW	589 MW
60.0 MW	294 MW

_

1.	ANS:	В	DIF:	Ι	OBJ:	5-1.2
2.	ANS:	А	DIF:	Ι	OBJ:	5-1.2
3.	ANS:	А	DIF:	Ι	OBJ:	5-1.2
4.	ANS:	С	DIF:	IIIB	OBJ:	5-4.3
5.	ANS:	В	DIF:	Ι	OBJ:	5-4.4
6.	ANS:	В	DIF:	IIIB	OBJ:	5-1.4
7.	ANS:	С	DIF:	IIIA	OBJ:	5-1.4
8.	ANS:	С	DIF:	IIIA	OBJ:	5-1.4
9.	ANS:	А	DIF:	IIIA	OBJ:	5-1.4
10.	ANS:	С	DIF:	IIIA	OBJ:	5-1.4
11.	ANS:	С	DIF:	IIIA	OBJ:	5-1.4
12.	ANS:	С	DIF:	IIIB	OBJ:	5-1.4
13.	ANS:	D	DIF:	Ι	OBJ:	5-2.1
14.	ANS:	D	DIF:	Ι	OBJ:	5-2.1
15.	ANS:	В	DIF:	I	OBJ:	5-2.1
16.	ANS:	Ċ	DIF:	I	OBJ:	5-2.1
17.	ANS:	D	DIF:	IIIA	OBJ:	5-2.2
18	ANS	A	DIF.	I	OBJ:	5-2.2
19	ANS	C	DIF.	IIIA	OBI:	5-2.2
20	ANS.	D	DIF.	II	OBJ.	5-2.2
20.	ANS.	D	DIF.	I	OBJ.	5-2.3
21.	ANS:	A	DIF.	I	OBJ.	5-2.3
22.	ANS.	R	DIF.	T	OBJ.	5-2.3
$\frac{23}{24}$	ANS.	C	DIE:	T	OBJ.	5-2.5 5-2.4
2 4 . 25	ANS.	R	DIF:	I T	OBJ.	5-2.4
25. 26	ANS.	D	DIF:	I T	OBJ.	5-2.4
20. 27	ANS.	C C	DIF:	I T	OBJ.	5-2.4
27. 28	ANS.	D	DIF:	I T	OBJ.	5-2.4
20. 20	ANS.		DIF.	I	OBJ.	5 2 5
29. 30	ANS.	R	DIF.	I	OBJ.	5 2 5
30. 31	ANS.				ODJ.	5 2 5
22	ANG.	A C			ODJ.	5 2 5
32. 22	ANG.		DIF.		ODJ.	5-2.5
55. 24	ANG.	A	DIF.		ODJ.	5-2.5
54. 25	ANG:	A	DIF:		ODJ:	5-2.5
55. 26	ANG:		DIF:	I T	ODJ:	5-5.1
30. 27	ANS:	A C	DIF: DIF:	I T	ODJ:	5-5.2
57. 20	ANG:		DIF:		ODJ:	5-5.2
20.	ANG:	D	DIF:		ODJ:	5-5.5
39. 40	ANS:	D	DIF:	IIIB	OBJ:	5-5.5
40.	ANS:		DIF:	IIIB	OBI:	5-3.3
41.	ANS:	D	DIF:	IIIB	OBJ:	5-3.3
42.	ANS:	C	DIF:	IIIB	OBJ:	5-4.1
43.	ANS:	D	DIF:	IIIB	OBJ:	5-4.1
44.	ANS:	В	DIF:	IIIB	OBJ:	5-4.1
45.	ANS:	D	DIF:	IIIB	OBJ:	5-4.1
46.	ANS:	В	DIF:	IIIB	OBJ:	5-4.1
47.	ANS:	C	DIF:	IIIB	OBJ:	5-4.1
48.	ANS:	D	DIF:	I	OBJ:	5-4.2
49.	ANS:	D	DIF:	Ι	OBJ:	5-4.2
50.	ANS:	В	DIF:	IIIB	OBJ:	5-4.3

51.	ANS:	В	DIF:	IIIB	OBJ:	5-4.3
52.	ANS:	С		DIF IIIC		OBJ: 5-4.3
53.	ANS:	А	DIF:	IIIC	OBJ:	5-4.3

6- Momentum and collision

Identify the letter of the choice that best completes the statement or answers the question.

 1. Which of the following has the greatest mo truck with a mass of 2250 kg moving at a veloc	mentum? ity of 25 m/s
car with a mass of 1210 kg moving at a velocity	y of 51 m/s
truck with a mass of 6120 kg moving at a veloc	ity of 10 m/s
car with a mass of 1540 kg moving at a velocity	v of 38 m/s
 2. Which of the following has the greatest motortoise with a mass of 270 kg moving at a velo	mentum? city of 0.5 m/s
hare with a mass of 2.7 kg moving at a velocity	of 7 m/s
turtle with a mass of 91 kg moving at a velocity	v of 1.4 m/s
roadrunner with a mass of 1.8 kg moving at a v	elocity of 6.7 m/s
 3. What velocity must a 1340 kg car have in o traveling at a velocity of 15 m/s to the west?	rder to have the same momentum as a 2680 kg truck
3.0×10^1 m/s to the west	$6.0 \times 10^1 \mathrm{m/s}$ to the west
$3.0 \times 10^1 \text{m/s}$ to the east	6.0×10^1 m/s to the east
 4. A child with a mass of 23 kg rides a bike w Compare the momentum of the child with the m Both the child and the bike have the same mom	ith a mass of 5.5 kg at a velocity of 4.5 m/s to the south. nomentum of the bike. entum.
The bike has a greater momentum than the child	d.
The child has a greater momentum than the bik	е.
Neither the child nor the bike has momentum.	
 5. When comparing the momentum of two mo The object with the higher velocity will have le equal.	oving objects, which of the following is correct? ss momentum if the masses are
The more massive object will have less momen	tum if its velocity is greater.
The less massive object will have less momentu	im if the velocities are the
The more massive object will have less momen same.	tum if the velocities are the
 6. A baseball is pitched very fast. Another bas the following statements is correct?	beball of equal mass is pitched very slowly. Which of
The fast-moving baseball is harder to stop beca	use it has more momentum.
The slow-moving baseball is harder to stop bec	ause it has more momentum.

The fast-moving baseball is easier to stop because it has more momentum.

The slow-moving baseball is easier to stop because it has more momentum.

7. A roller coaster climbs up a hill at 4 m/s and then zips down the hill at 30 m/s. The momentum of the roller coaster
remains the same throughout is greater up the hill than the ride.

is zero throughout the ride. is greater down the hill than up the hill.

8. A person sitting in a chair with wheels stands, causing the chair to roll backward across the floor. The momentum of the chair

was zero while stationary and increased when the person stood.

was greatest while the person sat in the chair.

remained the same.

was zero when the person got out of the chair and increased while the person sat.

9. A student walks to class at a velocity of 3 m/s. To avoid walking into a door as it opens, the student slows to a velocity of 0.5 m/s. Now late for class, the student runs down the corridor at a velocity of 7 m/s. The student had the least momentum while walking at a velocity of 3 m/s.

while walking at a veroency of 5 mills

while dodging the opening door.

immediately after the door opened.

while running to class at a velocity of 7 m/s.

10. An ice skater initially skating at a velocity of 3 m/s speeds up to a velocity of 5 m/s. The momentum of the skater remains the same.

increases.

becomes zero.

11. If a force is exerted on an object, which statement is true? A large force always produces a large change in the object's momentum.

A large force produces a large change in the object's momentum only if the force is applied over a very short time interval. A small force applied over a long time interval can produce a large change in the object's momentum. A small force produces a large change in the object's momentum.

- 12. The change in an object's momentum is equal to the product of the mass of the object and the time interval.

the product of the force applied to the object and the time interval.

the time interval divided by the net external force.

the net external force divided by the time interval.

13. A force is applied to stop a moving shopping cart. Increasing the time interval over which the force is applied

requires a smaller force.	requires a greater force.
requires the same force.	has no effect on the force needed.
 14. Which of the following situations is an ex A volleyball hits a mosquito	ample of a visible change in momentum? A hiker walks through a
A baseball is hit by a bat.	spider's web. A car drives over a pebble.
 15. Which of the following situations is an ex A tennis ball is hit into a net.	ample of change in momentum?
A helium-filled balloon rises upward into the	sky.
An airplane flies into some scattered white cle	ouds.
A bicyclist rides over a leaf on the pavement.	
 16. A 6.0×10^{-2} kg tennis ball moves at a vel- to rebound in the opposite direction at a speed -1.1 kg•m/s	ocity of 12 m/s. The ball is struck by a racket, causing it d of 18 m/s. What is the change in the ball's momentum? -0.38 kg•m/s
−1.8 kg•m/s	−0.72 kg•m/s
 17. A rubber ball with a mass of 0.30 kg is dr impact is 4.5 m/s and just after impact is 4.2 r −4.0 kg•m/s	ropped onto a steel plate. The ball's velocity just before m/s. What is the change in the ball's momentum? -0.09 kg•m/s
−12 kg•m/s	−2.6 kg•m/s
 18. A 0.2 baseball if pitched with a velocity of 60 m/s. What is the magnitude of change in 2 kg•m/s	of 40 m/s and is then batted to the pitcher with a velocity n the ball's momentum? 4 kg•m/s
20 kg∙m/s	8 kg∙m/s
 19. A ball with a momentum of 4.0 kg•m/s his kinetic energy. What is the change in the ball	its a wall and bounces straight back without losing any 's momentum?
8.0 kg∙m/s	0.0 kg∙m/s
-8.0 kg•m/s	-4.0 kg∙m/s
 20. A softball with a mass of 0.11 kg moves a rebounds in the opposite direction at a speed -0.33 kg•m/s	at a speed of 12 m/s. Then the ball is hit by a bat and of 15 m/s. What is the change in momentum of the ball? -1.3 kg•m/s
−3.0 kg•m/s	−1.6 kg•m/s
 21. A ball with a mass of 0.15 kg and a veloc with a velocity of 3.0 m/s. What is the change -0.15 kg•m/s	ity of 5.0 m/s strikes a wall and bounces straight back e in momentum of the ball? -0.30 kg•m/s
−7.50 kg•m/s	−1.20 kg•m/s
 22. The impulse experienced by a body is equipmentum.	uivalent to the body's change in velocity.
force.	kinetic energy.

 23. A moderate force will break an egg. Howe one dropped on the grass usually does not brea the time interval for stopping is greater.	ver, an egg dropped on the road usually breaks, while k because for the egg dropped on the grass, the change in momentum is greater.
is less.	less.
 24. Which of the following statements properly A large constant force changes an object's more	y relates the variables in the equation $\mathbf{F}\Delta t = \Delta \mathbf{p}$? nentum over a long time
interval. A large constant force acting over a long time is in momentum. A large constant force changes an object's mor	nterval causes a large change nentum at various time
A large constant force does not necessarily cau momentum.	se a change in an object's
 25. A large moving ball collides with a small s of the large ball decreases, and the momentum	tationary ball. The momentum of the small ball increases.
of the small ball decreases, and the momentum	of the large ball increases.
of the large ball increases, and the momentum	of the small ball decreases.
does not change for either ball.	
 26. A 75 kg person walking around a corner by same corner. The momentum of the 80 kg pers remained the same.	umped into an 80 kg person who was running around the on increased.
was conserved.	decreased.
 27. A 20 kg shopping cart moving at a velocity momentum of the shopping cart	v of 0.5 m/s collides into a store wall and stops. The
remains the same.	increases.
is conserved.	decreases.
 28. A rubber ball moving at a speed of 5 m/s h magnitude of the momentum of the rubber ball	it a flat wall and returned to the thrower at 5 m/s. The
remained the same.	increased.
was not conserved.	decreased.
 29. Two objects with different masses collide a collision, the two objects were moving at veloc the collision, the less massive object had gained momentum.	and bounce back after an elastic collision. Before the sities equal in magnitude but opposite in direction. After
the more massive object had gained momentum	n.
both objects had the same momentum.	
both objects lost momentum.	
 30. Two skaters stand facing each other. One s the skaters push away from each other without the 60 kg skater travels at a lower momentum.	kater's mass is 60 kg, and the other's mass is 72 kg. If spinning,

their momenta are equal but opposite.

their total momentum doubles.

their total momentum decreases.

 31. Two swimmers relax close together on air the other's mass is 55 kg. If the swimmers push their total momentum	mattresses in a pool. One swimmer's mass is 48 kg, and n away from each other, their total momentum triples
doubles.	their total momentum triples.
their total momentum	their momenta are equal but
decreases.	opposite.
 32. A soccer ball collides with another soccer bremains constant.	ball at rest. The total momentum of the balls is zero.
decreases.	increases.
 33. Paint is splattered on a canvas. After the pa and canvas	int sticks to the canvas, the total momentum of the paint
is equal and opposite.	is zero.
decreases.	increases.
 34. In a two-body collision, momentum is conserved.	
kinetic energy is conserved.	
neither momentum nor kinetic energy is conser	ved.
both momentum and kinetic energy are conserved	ved.
 35. The law of conservation of momentum stat the total initial momentum of all objects interace equals the total final momentum.	tes that the state of the state
the total initial momentum of all objects interact	cting with one another does not
the total momentum of all objects interacting w	vith one another is zero.
the total momentum of all objects interacting w constant regardless of the nature of the forces h	vith one another remains between the objects.
 36. Which of the following statements about th Momentum is conserved for a system of object other.	ne conservation of momentum is NOT correct? s pushing away from each
Momentum is not conserved for a system of ob	jects in a head-on collision.
Momentum is conserved when two or more int from each other.	eracting objects push away
The total momentum of a system of interacting regardless of forces between the objects.	objects remains constant
 37. A swimmer with a mass of 75 kg dives off	a raft with a mass of 500 kg. If the swimmer's speed is
4 m/s immediately after leaving the raft, what i 0.6 m/s	s the speed of the raft? 0.2 m/s
4.0 m/s	0.5 m/s

 38. An astronaut with a mass of 70.0 kg is outside a space capsule when the tether lir return to the capsule, the astronaut throws a 2.0 kg wrench away from the capsule at a At what speed does the astronaut move toward the capsule? 3.5 m/s 					
7.0 m/s	0.4 m/s				
 39. A bullet with a mass of 5.00×10^{-3} kg is lo The bullet is fired, causing the empty gun to re-	aded into a gun. The loaded gun has a mass of 0.52 kg. coil at a speed of 2.1 m/s. What is the speed of the				
120 m/s	48 m/s				
360 m/s	220 m/s				
 40. A 65.0 kg ice skater standing on frictionles of 32.0 m/s . At what velocity does the skater m 0.15 m/s	s ice throws a 0.15 kg snowball horizontally at a speed hove backward? 0.07 m/s				
1.20 m/s	0.30 m/s				
 41. Two skaters, each with a mass of 50 kg, are a 0.2 kg ball at 5 m/s to the other skater, who caball is caught?	e stationary on a frictionless ice pond. One skater throws atches it. What are the velocities of the skaters when the				
0.02 m/s moving toward each other	0.02 m/s moving apart				
0.04 m/s moving toward each other	0.04 m/s moving apart				
 42. Two carts with masses of 1.5 kg and 0.7 kg, respectively, are held together by a compressed spring. When released, the 1.5 kg cart moves to the left with a velocity of 7 m/s. What is the velocity of the 0.7 kg cart? (Disregard the mass of the spring.)					
7 m/s to the right	15 m/s to the right				
7 m/s to the left	15 m/s to the left				
 43. Each croquet ball in a set has a mass of 0.50 kg. The green ball travels at 10.5 m/s and strikes a stationary red ball. If the green ball stops moving, what is the final speed of the red ball after the collision?					
12.0 m/s	10.5 m/s				
9.6 m/s	6.0 m/s				
 44. A diver with a mass of 80.0 kg jumps from the dock. If the velocity of the diver in the air is diver after landing in the boat?	a dock into a 130.0 kg boat at rest on the west side of s 4.10 m/s to the west, what is the final velocity of the				
1.56 m/s to the west	2.52 m/s to the west				
1.56 m/s to the east	2.52 m/s to the east				
 45. Two objects move separately after colliding remain constant. Identify the type of collision, inelastic	g, and both the total momentum and total kinetic energy elastic				
perfectly inelastic	perfectly elastic				
 46. Two objects stick together and move with	the same velocity after colliding. Identify the type of				
collision. inelastic	elastic				

perfectly inelastic	perfectly elastic
 47. After colliding, objects are deformed and l inelastic	ose some kinetic energy. Identify the type of collision. elastic
perfectly inelastic	perfectly elastic
 48. Two billiard balls collide. Identify the type inelastic	e of collision. elastic
perfectly inelastic	perfectly elastic
 49. Two balls of dough collide and stick toget inelastic	her. Identify the type of collision. elastic
perfectly inelastic	perfectly elastic
 50. Two snowballs with masses of 0.40 kg and form a single snowball. The initial speed for ea of 1.0 kg is 3.0 m/s after the collision, what is 60 J	1 0.60 kg, respectively, collide head-on and combine to ach is 15 m/s. If the velocity of the snowball with a mass the decrease in kinetic energy? zero
90 J	110 J
 51. A 1.5×10^3 kg truck moving at 15 m/s strip. The vehicles hook bumpers and skid together a 1.7×10^5 J	kes a 7.5×10^2 kg automobile stopped at a traffic light. at 10.0 m/s. What is the decrease in kinetic energy? 1.1×10^5 J
$6.0 \times 10^4 \mathrm{J}$	$1.2 \times 10^4 \mathrm{J}$
 52. A clay ball with a mass of 0.35 kg has an i rest, and the two balls stick together and remai the 0.35 kg ball?	nitial speed of 4.2 m/s. It strikes a 3.5 kg clay ball at n stationary. What is the decrease in kinetic energy of
3.1 J	1.6 J
6.4 J	4.8 J
 53. An infant throws 5 g of applesauce at a velocity wall and sticks. What is the decrease in 1×10^{-3} J	locity of 0.2 m/s. All of the applesauce collides with a kinetic energy of the applesauce? $2 \times 10^{-4} \text{ J}$
$1 \times 10^{-4} \text{ J}$	$0.5 imes 10^{-4} \mathrm{J}$
 54. In an elastic collision between two objects the total momentum of the system will increase	with unequal masses, e.
the total momentum of the system will decreas	e.
 the kinetic energy of one object will increase be energy of the other object decreases.the momentum of one object will increase by to of the other object decreases.55. A billiard ball collides with a stationary ide the collision, which is true of the first ball? It comes to rest.	by the amount that the kinetic he amount that the momentum entical billiard ball in an elastic head-on collision. After It maintains its initial velocity.
It moves in the opposite direction.	It has one-half its initial velocity.

 56. A billiard ball collides with a second ident kinetic energy of the system after the collision two times as great	ical ball in an elastic head-on collision. What is the compared with the kinetic energy before the collision? unchanged
four times as great	one-fourth as great
 57. Which of the following best describes the if the momentum of the system is conserved?	kinetic energy of each object after a two-body collision
hight also be conserved	must be less
is doubled in value	must also be conserved
 58. Which of the following best describes the kinetic energy of the system is conserved?	momenta of two bodies after a two-body collision if the
might also be conserved	must be less
is doubled in value	must also be conserved
 59. An object with a mass of 0.10 kg makes ar mass of 0.15 kg. The final velocity of the 0.10 velocity of the 0.15 kg object after the collision object?	a elastic head-on collision with a stationary object with a kg object after the collision is -0.045 m/s and the final n is 0.16 m/s. What was the initial velocity of the 0.10 kg
0.20 m/s	0.16 m/s
-0.20 m/s	-1.06 m/s
 60. A bowling ball with a mass of 7.0 kg strike with a velocity of 6.0 m/s, and the ball continu the ball?	es a pin that has a mass of 2.0 kg. The pin flies forward es forward at 4.0 m/s. What was the original velocity of
6.6 m/s	4.0 m/s
3.3 m/s	5.7 m/s
 61. A 90 kg halfback runs north and is tackled collision is perfectly inelastic. Just after the tac Calculate the velocity of the 90 kg player just 10 m/s north	by a 120 kg opponent running south at 4 m/s. The ekle, both players move at a velocity of 2 m/s north. before the tackle. 3 m/s south
12 m/s north	4 m/s south
 62. A clay ball with a mass of 0.35 kg strikes a together. The final velocity of the balls is 2.1 m 2.1 m/s to the north	another 0.35 kg clay ball at rest, and the two balls stick n/s north. What was the first ball's initial velocity? 4.2 m/s to the north
4.2 m/s to the south	2.1 m/s to the south
 63. A 2 kg mass moving to the right makes an left at 4 m/s. The 2 kg mass reverses direction moves to the left at 1 m/s. What was the initial 4 m/s to the left	elastic head-on collision with a 4 kg mass moving to the after the collision and moves at 3 m/s. The 4 kg mass velocity of the 2 kg mass? 3 m/s to the right
4 m/s to the right	1 m/s to the left
 64. A 15 g marble moves to the right at 3.5 m/ marble. The final velocity of the 15 g marble is marble is 2.0 m/s to the right. What is the initia 4.0 m/s to the left	is and makes an elastic head-on collision with a 22 g s 5.4 m/s to the left, and the final velocity of the 22 g al velocity of the 22 g marble? 5.3 m/s to the left

4.0 m/s to the right

5.3 m/s to the right

6- Momentum and collision Answer Section

1.	ANS:	В	DIF:	IIIB	OBJ:	6-1.1
2.	ANS:	А	DIF:	IIIB	OBJ:	6-1.1
3.	ANS:	С	DIF:	IIIB	OBJ:	6-1.1
4.	ANS:	С	DIF:	II	OBJ:	6-1.1
5.	ANS:	С	DIF:	II	OBJ:	6-1.1
6.	ANS:	А	DIF:	II	OBJ:	6-1.2
7.	ANS:	В	DIF:	II	OBJ:	6-1.2
8.	ANS:	А	DIF:	II	OBJ:	6-1.2
9.	ANS:	В	DIF:	II	OBJ:	6-1.2
10.	ANS:	В	DIF:	II	OBJ:	6-1.2
11.	ANS:	С	DIF:	II	OBJ:	6-1.3
12.	ANS:	В	DIF:	Ι	OBJ:	6-1.3
13.	ANS:	С	DIF:	II	OBJ:	6-1.3
14.	ANS:	D	DIF:	II	OBJ:	6-1.3
15.	ANS:	А	DIF:	II	OBJ:	6-1.3
16.	ANS:	D	DIF:	IIIB	OBJ:	6-1.3
17.	ANS:	В	DIF:	IIIB	OBJ:	6-1.3
18.	ANS:	D	DIF:	IIIB	OBJ:	6-1.3
19.	ANS:	D	DIF:	IIIA	OBJ:	6-1.3
20.	ANS:	D	DIF:	IIIB	OBJ:	6-1.3
21.	ANS:	В	DIF:	IIIB	OBJ:	6-1.3
22.	ANS:	С	DIF:	Ι	OBJ:	6-1.4
23.	ANS:	С	DIF:	Ι	OBJ:	6-1.4
24.	ANS:	В	DIF:	Ι	OBJ:	6-1.4
25.	ANS:	А	DIF:	II	OBJ:	6-2.1
26.	ANS:	В	DIF:	II	OBJ:	6-2.1
27.	ANS:	В	DIF:	II	OBJ:	6-2.1
28.	ANS:	С	DIF:	II	OBJ:	6-2.1
29.	ANS:	А	DIF:	II	OBJ:	6-2.1
30.	ANS:	В	DIF:	II	OBJ:	6-2.2
31.	ANS:	В	DIF:	II	OBJ:	6-2.2
32.	ANS:	С	DIF:	II	OBJ:	6-2.2
33.	ANS:	А	DIF:	II	OBJ:	6-2.2
34.	ANS:	А	DIF:	Ι	OBJ:	6-2.3
35.	ANS:	D	DIF:	Ι	OBJ:	6-2.3
36.	ANS:	В	DIF:	Ι	OBJ:	6-2.3
37.	ANS:	С	DIF:	IIIB	OBJ:	6-2.4
38.	ANS:	В	DIF:	IIIB	OBJ:	6-2.4
39.	ANS:	В	DIF:	IIIC	OBJ:	6-2.4
40.	ANS:	А	DIF:	IIIB	OBJ:	6-2.4
41.	ANS:	А	DIF:	IIIB	OBJ:	6-2.4
42.	ANS:	А	DIF:	IIIA	OBJ:	6-2.4
43.	ANS:	А	DIF:	IIIB	OBJ:	6-2.4
44.	ANS:	С	DIF:	IIIB	OBJ:	6-2.4
45.	ANS:	А	DIF:	Ι	OBJ:	6-3.1
46.	ANS:	D	DIF:	Ι	OBJ:	6-3.1
47.	ANS:	С	DIF:	Ι	OBJ:	6-3.1
48.	ANS:	А	DIF:	Ι	OBJ:	6-3.1
49.	ANS:	D	DIF:	Ι	OBJ:	6-3.1
50.	ANS:	В	DIF:	IIIB	OBJ:	6-3.2

51.	ANS:	D	DIF:	IIIC	OBJ:	6-3.2
52.	ANS:	С	DIF:	IIIC	OBJ:	6-3.2
53.	ANS:	D	DIF:	II	OBJ:	6-3.2
54.	ANS:	D	DIF:	IIIB	OBJ:	6-3.3
55.	ANS:	С	DIF:	Ι	OBJ:	6-3.3
56.	ANS:	А	DIF:	Ι	OBJ:	6-3.3
57.	ANS:	С	DIF:	Ι	OBJ:	6-3.3
58.	ANS:	В	DIF:	Ι	OBJ:	6-3.3
59.	ANS:	С	DIF:	IIIC	OBJ:	6-3.4
60.	ANS:	В	DIF:	IIIB	OBJ:	6-3.4
61.	ANS:	С	DIF:	IIIB	OBJ:	6-3.4
62.	ANS:	А	DIF:	IIIB	OBJ:	6-3.4
63.	ANS:	А	DIF:	IIIB	OBJ:	6-3.4
64.	ANS:	С	DIF:	IIIC	OBJ:	6-3.4

7-Rotational Motion and gravity

Identify the letter of the choice that best completes the statement or answers the question.

 1. Which of the following angles equals $2\pi ratio 0^{\circ}$	nd? 360°
3.14°	180°
 2. One radian is equal to 57.3°.	60°.
56°.	58°.
 3. How would an angle in radians be converted. The angle in radians would be multiplied by 18	ed to an angle in degrees? $80^{\circ}/\pi$.
The angle in radians would be multiplied by 36	$50^{\circ}/\pi$.
The angle in radians would be multiplied by 18	$30^{\circ}/2\pi$.
The angle in radians would be multiplied by 2 <i>n</i>	z/360°.
 4. How would you convert an angle in degree multiply the angle measured in degrees by $2\pi/2$	es to an angle in radians? 180°
multiply the angle measured in degrees by $2\pi/3$	360°
multiply the angle measured in degrees by $\pi/36$	50°
multiply the angle measured in degrees by $2\pi r^2$	0
 5. A cave dweller rotates a pebble in a sling w length of 0.96 m. What is the angular displacer 3.2 rad	vith a radius of 0.30 m counterclockwise through an arc nent of the pebble? 1.6 rad

-3.2 rad -1.6 rad

 6. Earth has an equatorial radius of approxim the angular displacement of a person standing a 0.78 rad	ately 6380 km, and it rotates 360° every 24 h. What is at the equator for 3.0 h? 0.26 rad
0.39 rad	0.52 rad
 7. A child sits on a carousel at a distance of 36.5 m. What is the angular displacement of the 3.0 rad	.5 m from the center and rotates through an arc length of child? 1.9 rad
5.0 rad	0.93 rad
 8. A bucket on the circumference of a water wheel is 4.1 m, what is the angular displaceme 3.7 rad	wheel travels an arc length of 18 m. If the radius of the nt of the bucket? 1.0 rad
2.3 rad	4.4 rad
 9. What is the approximate angular speed of a 16 rad/s	a wheel rotating at the rate of 5.0 rev/s? 3.2 rad/s
31 rad/s	1.6 rad/s
 10. A grinding wheel initially at rest with a rad 12.0 rad/s in 4.0 s. What is the wheel's average 3.0 rad/s^2	lius of 0.15 m rotates until it reaches an angular speed of angular acceleration? 96 rad/s ²
0.33 rad/s ²	48 rad/s ²
 11. A potter's wheel moves from rest to an ang acceleration of the wheel?	gular speed of 0.54 rad/s in 30.0 s. What is the angular
0.018 rad/s^2	16 rad/s^2
0.042 rad/s^2	1.3 rad/s^2
 12. A record player is turned on and reaches an average angular acceleration of the record?	n angular velocity of 4.7 rad/s in 1.37 s. What is the
6.4 rad/s ²	3.4 rad/s ²
0.29 rad/s^2	4.3 rad/s ²
 13. A Ferris wheel initially at rest accelerates t an angular displacement of 4.90 rad. What is th 1.80 rad/s^2	to a final angular speed of 0.70 rad/s and rotates through the Ferris wheel's average angular acceleration? 0.10 rad/s ²
0.60 rad/s^2	0.05 rad/s^2
 14. A Ferris wheel rotates with an initial anguli interval at a rate of 4.0×10^{-2} rad/s ² . What is its 0.46 rad/s	ar speed of 0.50 rad/s and accelerates over a 7.00 s s angular speed? 0.20 rad/s
0.78 rad/s	0.30 rad/s
 15. An automobile tire with a radius of 0.30 m acceleration of 2.0 rad/s ² for 5.0 s. What is the 2.0 rad	starts at rest and accelerates at a constant angular angular displacement of the tire? 12 rad
0.50 rad	25 rad

 16. A bicycle wheel rotates with a constant any speed of the wheel is 1.5 rad/s, what is the ang 3.0×10^1 rad	gular acceleration of 3.0 rad/s ² . If the initial angular ular displacement of the wheel after 4.0 s? 6.0 rad
36 rad	24 rad
 17. A gear in a machine accelerates at 11.2 rad what is the wheel's angular speed after exactly 209 rad/s	l/s ² . If the wheel's initial angular speed is 5.40 rad/s, 3.0 seconds? 39.0 rad/s
28.2 rad/s	13.6 rad/s
 18. A ball rolls downhill with an angular speed 2.0 rad/s^2 . If the ball takes 11.5 s to reach the b ball?	d of 2.5 rad/s and has a constant angular acceleration of bottom of the hill, what is the final angular speed of the
33 rad/s	13 rad
25.5 rad/s	31 rad/s
 19. A helicopter has 3.0 m long rotor blades the tangential speed of each blade tip?	at are rotating at an angular speed of 63 rad/s. What is
21 m/s	99 m/s
66 m/s	190 m/s
 20. The end of the cord on a weed cutter is 0.1 rad/s, what is the tangential speed of the cord? 19 m/s	5 m in length. If the motor rotates at the rate of 126 628 m/s
63 m/s	25 m/s
 21. A point on the rim of a 0.30 m radius rotat tangential speed of a point 0.20 m from the cer 2.6 m/s	ing wheel has a tangential speed of 4.0 m/s. What is the atter of the same wheel? 0.8 m/s
8.0 m/s	1.3 m/s
 22. A cylinder with a diameter of 0.150 m rota What is the tangential speed of the surface of t 2.37×10^2 m/s	ttes in a lathe at a constant angular speed of 35.6 rad/s. he cylinder? 2.67 m/s
$4.75 \times 10^2 \text{m/s}$	5.34 m/s
 23. A wheel with a radius of 1.2 m rotates at a tangential speed of a point 0.55 m from the wh 13 m/s	constant angular speed of 10.5 rad/s. What is the eel's axis? 19 m/s
8.7 m/s	5.8 m/s
 24. An automobile tire with a radius of 0.3 m a interval. What is the tangential component of a 0.6 m/s^2	accelerates from rest at a constant 2 rad/s ² over a 5 s acceleration for a point on the outer edge of the tire? 30 m/s^2
0.3 m/s ²	7 m/s ²

 25. A hamster gets on a stationary wheel w angular speed of 12.0 rad/s in 4.0 s. What is 0.65 rad/s^2	ith a radius of 0.15 m and runs until the wheel rotates at an s the tangential acceleration of the wheel's edge? 0.45 rad/s^2			
1.30 rad/s^2	0.6 rad/s^2			
 26. A flywheel with a radius of 0.30 m star acceleration of 0.50 rad/s ² . What is the tang 0.65 m/s ²	ts from rest and accelerates with a constant angular gential acceleration of the flywheel? 0.63 m/s ²			
1.30 m/s ²	0.15 m/s ²			
 27. A contestant in a game show spins a state constant angular acceleration of 0.40 rad/s ² , of the wheel?	ationary wheel with a radius of 0.50 m so that it has a . What is the tangential acceleration of a point on the edge			
1.3 m/s^2	0.20 m/s^2			
0.73 m/s ²	0.60 m/s ²			
 28. A stone on the edge of the tire of a unic acceleration of 4.0 m/s^2 . What is the tire's a 3.2 rad/s	cycle wheel with a radius of 0.25 m has a centripetal ngular speed? 1.0 rad/s			
4.0 rad/s	2.0 rad/s			
 29. A point on the rim of a rotating wheel v_{m/s^2} . What is the angular speed of the whee	with a 0.37 m radius has a centripetal acceleration of 19.0			
3.2 rad/s	0.89 m/s			
7.2 rad/s	1.6 rad/s			
 30. A lapidary plate at rest is turned on to cut a gemstone. The plate rotates until it reaches an angular speed of 12.0 rad/s in 4.0 s. What is the centripetal acceleration of a point 0.10 m from the center of the plate?				
14 m/s^2	0.45 m/s^2			
29 m/s ²	7.2 m/s^2			
 31. If the distance from the center of a mern acceleration does a passenger experience w rad/s?	ry-go-round to the edge is 1.2 m, what centripetal hen the merry-go-round rotates at an angular speed of 0.5			
0.3 m/s^2	1.7 m/s^2			
0.6 m/s ²	0.9 m/s^2			
 32. A 80.0 kg passenger is seated 12 m from force does the passenger experience when t 7.2×10^3 N	m the center of the loop of a roller coaster. What centripetal he roller coaster reaches an angular speed of 3.14 rad/s? $1.7 \times 10^3 \text{ N}$			
$9.5 \times 10^3 \mathrm{N}$	$6.9 \times 10^3 \mathrm{N}$			
 33. A 0.40 kg ball on a 0.50 m string rotate of the ball at the bottom of the circle is 8.0 the 13 N	s in a circular path in a vertical plane. If the angular speed rad/s, what is the force that maintains circular motion? 5.6 N			
20.0 N	11 N			

 34. A 0.40 kg ball on a 0.50 m string rotates in a circular path in a vertical plane. If a constant angula speed of 8.0 rad/s is maintained, what is the tension in the string when the ball is at the top of the circle?				
13 N	9.0 N			
10.0 N	11 N			
 35. A roller coaster loaded with passengers ha track at the lowest point of the track is 24 m. It point, what force is exerted on the vehicle by t	s a mass of 2.0×10^3 kg; the radius of curvature of the f the vehicle has a tangential speed of 18 m/s at this he track?			
$3.0 \times 10^4 \mathrm{N}$	$2.3 \times 10^4 \mathrm{N}$			
$2.7 \times 10^4 \mathrm{N}$	$4.7 \times 10^4 \mathrm{N}$			
 36. What is the gravitational force between tw apart? ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)	to trucks, each with a mass of 2.0×10^4 kg, that are 2.0 m			
$6.7 \times 10^{-3} \text{ N}$	$5.7 \times 10^{-2} \text{ N}$			
$1.2 \times 10^{-7} \text{ N}$	$1.3 \times 10^{-2} \mathrm{N}$			
 37. The gravitational force between two masses between them is tripled? ($G = 6.673 \times 10^{-11}$ No	es is 36 N. What is the gravitational force if the distance $\mathbf{m}^2/\mathbf{kg}^2$)			
18 N	4.0 N			
27 N	9.0 N			
 38. Two small masses that are 10.0 cm apart a 5.0 cm apart, these masses will attract each oth $(G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$	ttract each other with a force of 10.0 N. When they are ner with what force?			
20.0 N	5.0 N			
40.0 N	2.5 N			

7-Rotational Motion and gravity Answer Section

1.	ANS:	А	DIF:		Ι	OBJ:	7-1.1
2.	ANS:	С	DIF:		IIIA	OBJ:	7-1.1
3.	ANS:	А	DIF:		II	OBJ:	7-1.1
4.	ANS:	В	DIF:		Ι	OBJ:	7-1.1
5.	ANS:	С	DIF:		IIIB	OBJ:	7-1.2
6.	ANS:	С	DIF:		IIIA	OBJ:	7-1.2
7.	ANS:	А	DIF:		IIIB	OBJ:	7-1.2
8.	ANS:	В	DIF:		IIIB	OBJ:	7-1.2
9.	ANS:	D	DIF:		IIIA	OBJ:	7-1.3
10.	ANS:	С	DIF:		IIIA	OBJ:	7-1.3
11.	ANS:	С	DIF:		IIIB	OBJ:	7-1.3
12.	ANS:	А	DIF:		IIIA	OBJ:	7-1.3
13.	ANS:	В	DIF:		IIIB	OBJ:	7-1.3
14.	ANS:	D	DIF:		IIIB	OBJ:	7-1.4
15.	ANS:	В	DIF:		Ι	OBJ:	7-1.4
16.	ANS:	С	DIF:		IIIB	OBJ:	7-1.4
17.	ANS:	А	DIF:		IIIB	OBJ:	7-1.4
18.	ANS:	D	DIF:		IIIB	OBJ:	7-1.4
19.	ANS:	В	DIF:		IIIC	OBJ:	7-2.1
20.	ANS:	С	DIF:		IIIB	OBJ:	7-2.1
21.	ANS:	С	DIF:		IIIA	OBJ:	7-2.1
22.	ANS:	А	DIF:		IIIA	OBJ:	7-2.1
23.	ANS:	В	DIF:		IIIC	OBJ:	7-2.1
24.	ANS:	С	DIF:		IIIB	OBJ:	7-2.2
25.	ANS:	А	DIF:		IIIB	OBJ:	7-2.2
26.	ANS:	В	DIF:		IIIC	OBJ:	7-2.2
27.	ANS:	А	DIF:		IIIB	OBJ:	7-2.2
28.	ANS:	D	DIF:		IIIB	OBJ:	7-2.3
29.	ANS:	D	DIF:		IIIB	OBJ:	7-2.3
30.	ANS:	С	DIF:		IIIB	OBJ:	7-2.3
31.	ANS:	С	DIF:		IIIB	OBJ:	7-2.3
32.	ANS:	D	DIF:		IIIA	OBJ:	7-3.1
33.	ANS:	С	DIF:		IIIC	OBJ:	7-3.1
34.	ANS:	А	DIF:		IIIC	OBJ:	7-3.1
35.	ANS:	D	DIF:		IIIB	OBJ:	7-3.1
36.	ANS:	С	DIF:		IIIB	OBJ:	7-3.3
37.	ANS:	А	DIF:	•	IIIA	OBJ:	7-3.3
38.	ANS:	D	DIF:		II	OBJ:	7-3.3

8-ROTATIONAL MOTION AND DYNAMICS

Identify the letter of the choice that best completes the statement or answers the question.

1. If a net torque is applied to an object, that object will experience which of the following? a constant moment of inertia a constant angular speed

an increasing moment of inertia

an angular acceleration

2. Which of the following quantities measures the ability of a force to rotate or accelerate an object around an axis?

moment arm axis of rotation lever arm torque 3. Which of the following statements is correct? The farther the force is from the axis of rotation, the more torque is produced. The closer the force is to the axis of rotation, the more torque is produced. The closer the force is to the axis of rotation, the easier it is to rotate the object. The farther the force is from the axis of rotation, the less torque is produced. 4. Where should a force be applied on a lever arm to produce the most torque? closest to the axis of rotation farthest from the axis of rotation in the middle of the lever arm It doesn't matter where the force is applied. 5. To warm up before a game, a baseball pitcher tosses a 0.15 kg ball by rotating his forearm, which is 0.32 m in length, to accelerate the ball. The ball starts at rest and is thrown at a speed of 12 m/s in 0.40 s. While the ball is in the pitcher's hand, what torque is applied to the ball to produce the angular acceleration? 7.2 N•m 1.1 N•m 11 N•m 1.4 N•m 6. A bucket filled with water has a mass of 23 kg and is attached to a rope that is wound around a cylinder with a radius of 0.050 m at the top of a well. What torque does the weight of the water and bucket produce on the cylinder? ($g = 9.81 \text{ m/s}^2$.) 11 N•m 34 N•m 23 N•m 17 N•m 7. A force of 4.0 N is applied to a door at an angle of 60.0° and a distance of 0.30 m from the hinge. What is the torque produced? 0.87 N•m 1.0 N•m 0.22 N•m 0.75 N•m 8. A heavy bank-vault door is opened by the application of a force of 3.0×10^2 N directed perpendicular to the plane of the door at a distance of 0.80 m from the hinges. What is the torque? 300 N•m 120 N•m 240 N•m 360 N•m 9. Suppose a doorknob is placed at the center of a door. Compared with a door whose knob is located at the edge, what amount of force must be applied to this door to produce the torque exerted on the other door? one-fourth as much one-half as much

two times as much

four times as much

10. If you want to open a swinging door with the least amount of force, where should you push on the door?

as far from the hinges as close to the hinges possible It does not matter where you in the middle push.

11. If you cannot exert enough force to loosen a bolt with a wrench, which of the following should you do?

Use a wrench with a longer handle.

Tie a rope to the end of the wrench and pull on the rope.

Use a wrench with a shorter handle.

You should exert a force on the wrench closer to the bolt.

12. If the torque required to loosen a nut on a wheel has a magnitude of 40.0 N•m and the force exerted by a mechanic is 133 N, how far from the nut must the mechanic apply the force?
30.0 cm

В

В

1.20 m

15.0 cm

13. At which point in the figure above is the approximate center of mass? C A

D

14. At which point on the baseball bat above is the approximate center of mass? C A

D

15. At which point on the hammer above is the approximate center of mass? С А

D

В

16. At which point on the hollow sphere above is the approximate center of mass? С А

В

D

17. Which of the following is NOT an intrinsic property of an object? center of mass mass

center of gravity

moment of inertia

18. Which of the following statements is correct?

The farther the center of mass of an object is from the axis of rotation, the less difficult it is to rotate the object.

The farther the center of mass of an object is from the axis of rotation, the smaller the object's moment of inertia is.

The farther the center of mass of an object is from the axis of rotation, the greater the object's moment of inertia is.

The farther the center of mass of an object is from the axis of rotation, the greater the object's moment of inertia is, but the less difficult it is to rotate the object.

19. The dependence of equilibrium on the absence of net torque is rotational equilibrium. the first condition of equilibrium. the second condition of

translational equilibrium.

20. A uniform bridge span weighs 5.00×10^4 N and is 40.0 m long. An automobile weighing 1.50×10^4 N is parked with its center of gravity located 12.0 m from the right pier. What upward support force is provided by the left pier? $6.50 \times 10^4 \,\mathrm{N}$ 2.95×10^4 N

equilibrium.

 3.25×10^4 N $3.55 \times 10^4 \,\mathrm{N}$ 21. A meterstick supported by a knife edge at the 50 cm mark has masses of 0.40 kg and 0.60 kg hanging from the 20 cm and 80 cm marks, respectively. At what mark should a third mass of 0.30 kg be hung to keep the stick balanced?

30 cm

20 cm

25 cm

70 cm

22. A uniform horizontal beam with a length of 6.0 m and a weight of 120 N is attached at one end to a wall by a pin connection so that the beam can rotate. The opposite end of the beam is supported by a cable attached to the wall above the pin. The cable makes an angle of 60.0° with the beam. What is the tension in the cable needed to maintain the beam in equilibrium? 6.0×10^{1} N 35 N

120 N	69 N
-------	------

23. A child with a weight of 4.50×10^2 N sits on a seesaw 0.60 m from the axis of rotation. How far from the axis of rotation on the other side should a child with a weight of 6.00×10^2 N sit so the seesaw will remain balanced?

0.45 m	0.30 m
0.50 m	0.40 m

24. According to Newton's second law, the angular acceleration experienced by an object is directly proportional to which of the following?

the size of the object the object's moment of inertia

the mass of the object

the net applied torque

25. Which of the following statements is correct? With a net positive torque, the angular acceleration of an object is clockwise.

With a net positive torque, the angular acceleration of an object is counterclockwise.

With a net negative torque, the angular acceleration of an object is counterclockwise.

The net force of an object is not related to the translational acceleration given to the object.

26. Which of the following represents Newton's second law for rotating objects? net torque = moment of inertia × angular acceleration

net torque = moment of inertia ÷ angular acceleration

 $force = mass \times acceleration$

force = mass \div acceleration

 27. A grinding wheel with a moment of inertia of 2.0 kg \cdot m ² is initially at rest. What angular momentum will the wheel have 10.0 s after a 2.5 N \cdot m torque is applied to it? 4.0 kg \cdot m ² /s 25 kg \cdot m ² /s			
$0.25 \text{ kg} \cdot \text{m}^2/\text{s}$	7.5 kg•m ² /s		
 28. A bowling ball has a mass of 7.0 kg, a moment of inertia of 2.8×10^{-2} kg•m ² , and a radius of 0.10 m. If it rolls down the lane without slipping at an angular speed of 4.0×10^{1} rad/s, what is its angular momentum ²			
$11 \text{ kg} \cdot \text{m}^2/\text{s}$	0.80 kg•m ² /s		
$1.1 \text{ kg} \cdot \text{m}^2/\text{s}$	$1.4 \text{ kg} \cdot \text{m}^2/\text{s}$		
 29. A figure skater with arms drawn in spins inertia of 1.875 kg \bullet m ² . What is the angular 19.4 kg \bullet m ² /s	s on the ice at a rate of 5.0 rad/s and has a moment of nomentum of the skater? 2.5 kg•m ² /s		
12 kg∙m²/s	3.8 kg•m ² /s		
 30. The moment of inertia of a cylinder is 0.016 kg \bullet m ² . If the angular speed is 15.7 rad/s, what is the angular momentum of the cylinder?			
$19.2 \text{ kg} \cdot \text{m}^2/\text{s}$	$0.25 \text{ kg} \cdot \text{m}^2/\text{s}$		
28.6 kg•m ² /s	12.1 kg•m²/s		
 31. A 2.50 N•m torque is applied to a grinding wheel that has a moment of inertia of 2.00 kg•m ² . What is the final kinetic energy of the grinding wheel 10.0 s after beginning from rest? 156 J 312 J			
106 J	237 J		
 32. The total kinetic energy of a baseball thrown with a spinning motion is a function of which of the following? the ball's linear speed only			
the ball's rotational speed only			
both the ball's linear and rotational speeds			
neither the ball's linear nor the ball's rotational speed			
 33. A bowling ball has a mass of 7.0 kg, a moment of inertia of 2.8×10^{-2} kg•m ² , and a radius of 0.10 m. If it rolls down the lane without slipping at a linear speed of 4.0 m/s, what is its total kinetic energy? 11 J 45 J			
78 J	32 J		
 34. A bucket filled with water has a mass of 23 kg and is attached to a rope that is wound with a crank around a 0.05 m radius cylinder at the top of a well. The moment of inertia of the cylinder and crank is $0.12 \text{ kg} \cdot \text{m}^2$. The bucket and water are first raised to the top of the well and then released to fall back into the well. What is the rotational kinetic energy of the cylinder and crank at the instant the bucket is moving at a speed of 7.9 m/s ² .			
$7.0 \times 10^2 \mathrm{J}$	$2.1 \times 10^3 \text{ J}$		
$4.0 imes 10^2 ext{ J}$	$1.5 imes 10^3 ext{ J}$		

35. A solid sphere with a mass of 4.0 kg and a radius of 0.12 m starts from rest at the top of a ramp inclined at 15° and rolls to the bottom. The upper end of the ramp is 1.2 m higher than the lower end. What is the total kinetic energy of the sphere when it reaches the bottom? (Assume that the sphere rolls without slipping and that $g = 9.81 \text{ m/s}^2$.) 18 J 70 J

8.8 J

47 J

8-ROTATIONAL MOTION AND DYNAMICS Answer Section

1.	ANS:	В	DIF:	Ι	OBJ:	8-1.2
2.	ANS:	D	DIF:	Ι	OBJ:	8-1.2
3.	ANS:	А	DIF:	Ι	OBJ:	8-1.2
4.	ANS:	В	DIF:	Ι	OBJ:	8-1.2
5.	ANS:	D	DIF:	IIIB	OBJ:	8-1.3
6.	ANS:	С	DIF:	IIIB	OBJ:	8-1.3
7.	ANS:	А	DIF:	IIIB	OBJ:	8-1.3
8.	ANS:	В	DIF:	IIIB	OBJ:	8-1.3
9.	ANS:	В	DIF:	II	OBJ:	8-1.4
10.	ANS:	С	DIF:	Ι	OBJ:	8-1.4
11.	ANS:	А	DIF:	II	OBJ:	8-1.4
12.	ANS:	С	DIF:	IIIA	OBJ:	8-1.4
13.	ANS:	А	DIF:	II	OBJ:	8-2.1
14.	ANS:	В	DIF:	II	OBJ:	8-2.1
15.	ANS:	D	DIF:	II	OBJ:	8-2.1
16.	ANS:	С	DIF:	II	OBJ:	8-2.1
17.	ANS:	В	DIF:	Ι	OBJ:	8-2.2
18.	ANS:	С	DIF:	Ι	OBJ:	8-2.2
19.	ANS:	В	DIF:	Ι	OBJ:	8-2.3
20.	ANS:	А	DIF:	IIIB	OBJ:	8-2.4
21.	ANS:	С	DIF:	IIIB	OBJ:	8-2.4
22.	ANS:	В	DIF:	IIIB	OBJ:	8-2.4
23.	ANS:	С	DIF:	IIIA	OBJ:	8-2.4
24.	ANS:	В	DIF:	Ι	OBJ:	8-3.1
25.	ANS:	В	DIF:	Ι	OBJ:	8-3.1
26.	ANS:	А	DIF:	Ι	OBJ:	8-3.1
27.	ANS:	А	DIF:	Ι	OBJ:	8-3.2
28.	ANS:	D	DIF:	IIIA	OBJ:	8-3.2
29.	ANS:	С	DIF:	IIIA	OBJ:	8-3.2
30.	ANS:	А	DIF:	IIIB	OBJ:	8-3.2
31.	ANS:	С	DIF:	IIIB	OBJ:	8-3.3
32.	ANS:	С	DIF:	Ι	OBJ:	8-3.3
33.	ANS:	D	DIF:	IIIB	OBJ:	8-3.3
34.	ANS:	В	DIF:	IIIC	OBJ:	8-3.3
35.	ANS:	В	DIF:	IIIA	OBJ:	8-3.3